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SUMMARY 

The paper addresses the statistical analysis of the shear strength of struc-

tural glued laminated timber (glulam) based on full-size flexure tests. In the 

study conducted, a total of thirty combined glulam beams (outer three lamina-

tions: strength class C35, respectively, six core laminations : strength class C24) 

were tested. A subset of eighteen specimens failed in the targeted shear mode 

whereas the remainder failed in flexural mode. In the statistical framework of 

incomplete data, the random sample obtained was identified as one including 

Type I right-censored observations. Although such data sets occur under a vari-

ety of circumstances in material testing, adequate evaluation procedures are 

rarely applied. Hence, a major part of the paper is devoted to the appropriate pa-

rameter estimation of such random samples. Since statistical distributions of the 

location-scale family lead to convenient closed-form equations, this case is em-

phasized. A two-parameter Weibull distribution being of log-location-scale form 

was found to fit the data adequately. 

Statistical inference was based on likelihood ratio procedures. The accu-

racy of the point estimate for the Weibull distribution was characterized by 

means of its joint confidence region as well as by means of its marginal confi-

dence intervals. The characteristic shear value of the glulam tested was derived 

as a lower one-sided confidence interval for the 5%-quantile of the Weibull dis-
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tribution fitted. The characteristic shear value obtained was found to be slightly 

above the value given in the new German timber design code DIN 1052. 

ZUSAMMENFASSUNG 

Der Aufsatz beschäftigt sich mit der statistischen Auswertung von Schub-

versuchen an Brettschichtholz in Bauteilgröße. In einer Versuchsreihe wurden 

insgesamt 30 kombinierte Brettschichtholzträger (je drei Lamellen in der Biege-

zug- bzw. Biegedruckzone : Festigkeitsklasse C35, innere sechs Lamellen : Fes-

tigkeitsklasse C24) im Schubversuch geprüft. Dabei war bei 18 Proben Schub-

versagen und bei 12 Proben Biegeversagen maßgebend. In der Statistik wird ein 

derartiger Datensatz als „unvollständig“ bezeichnet, wobei diejenigen Proben, 

bei denen Biegeversagen auftritt, als rechts zensierte Daten vom Typ I aufgefaßt 

werden können. Obwohl unvollständige Datensätze in der Materialprüfung unter 

einer Vielzahl von Umständen auftreten, werden diese doch nur selten unter 

Anwendung der hierfür geeigneten statistischen Methoden ausgewertet. Aus 

diesem Grund wird die Parameterschätzung für unvollständige Datensätze mit 

Typ I rechts zensierten Beobachtungen ausführlich dargestellt. Für statistische 

Verteilungen der Lage-Skalen-Familie ergeben sich dabei besonders einfache 

analytische Ausdrücke, so daß dieser Fall herausgestellt wird. Die Auswertung 

des vorliegenden Datensatzes erbrachte, daß eine zweiparametrische Weibull-

verteilung, die der Familie der logarithmierten Lage-Skalen-Verteilungen zuge-

ordnet werden kann, die Häufigkeitsverteilung des Datensatzes sehr gut wieder-

gibt. 

Für Zwecke der statistischen Inferenz wurde die Likelihood-Quotienten-

Methode gewählt. Die Genauigkeit der Parameterschätzung für die angepaßte 

Weibullverteilung wurde sowohl mittels einer Vertrauensregion als auch mit 

Hilfe von Vertrauensintervallen überprüft. Der charakteristische Wert wurde als 

einseitiges unteres Vertrauensintervall für die 5%-Quantile der Weibullvertei-

lung hergeleitet. Die Auswertung erbrachte, daß die aus den vorliegenden Daten 

ermittelte charakteristische Schubfestigkeit geringfügig oberhalb desjenigen Re-

chenwertes lag, der für Brettschichtholz in der Neuausgabe von DIN 1052 ange-

geben wird. 

 



Statistical analysis of the shear strength of glued laminated timber based on full-size flexure tests 

Otto-Graf-Journal Vol. 16, 2005 227

RESUME 

Cet article traite de l’analyse statistique de résultats d’essais de cisaillement 

en vraie grandeur effectués sur des poutres en bois lamellé-collé. Dans l’étude 

considérée, un échantillon de 30 poutres lamellé-collé panaché (3 lamelles exté-

rieures de part et d’autre en C35, lamelles centrales en C24) a été testé. Une rup-

ture en cisaillement a été observée pour 18 spécimens, les 12 restants ayant fait 

l’objet d’une rupture en flexion. Statistiquement, on considère un tel ensemble 

de données comme «incomplet », néanmoins, l’ensemble des résultats issus du 

mode de rupture en flexion peut être considéré comme observation censurée à 

droite de type I. Bien que cette typologie de données incomplètes soit observée 

dans une grande variété de circonstances dans les essais de matériaux, 

l’application de méthode d’analyse statistique adéquate est rare. L’estimation de 

paramètres de distribution appropriés pour de tels ensembles de données est de 

ce fait traitée de manière détaillée. La loi de distribution logistique (position, 

échelle) amenant des analyses particulièrement pratique sera mise en avant. Une 

distribution de Weibull à deux paramètres, s’apparentant à une forme log-

logistique, représente l’ensemble des données de manière très adéquate. 

La méthode du maximum de vraisemblance a été choisie pour analyser 

l’inférence statistique. La précision de l’estimation des paramètres de la distribu-

tion de Weibull a été vérifiée aussi bien à l’aide de la région de confiance qu’au 

moyen des intervalles de confiance marginaux. La résistance caractéristique est 

alors déterminée comme l’intervalle de confiance unilatéral inférieur du quantile 

à 5% de la distribution de Weibull. La résistance caractéristique au cisaillement 

du bois lamellé-collé ainsi obtenue est très légèrement supérieure à celle publiée 

dans le nouveau code de dimensionnement allemand DIN 1052 :2004. 

 

KEYWORDS: Glued laminated timber, incomplete observations, type I right-

censoring mechanism, likelihood ratio procedures, characteristic 

shear value 
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1. INTRODUCTION 

The shear strength of structural glued laminated timber (glulam) is fre-

quently determined in full-size flexure tests. In a typical test setup, the glulam 

beams are supported at both ends and loaded by two single forces until ultimate 

load is reached. The dimensions are usually chosen so that the glulam beams 

exhibit a low span-to-depth ratio. Although such a test setup is likely to induce 

shear failure, it is a characteristic feature of such tests that only a certain propor-

tion of the tested specimens fails in the targeted shear mode while the remainder 

of the specimens fails in flexure. The shear strength of the specimens which fail 

in shear is easily obtained. Those specimen, however, which fail in flexural 

mode only yield a shear stress containing the information of what the shear 

strength must be at least. 

In the statistical analysis of such data sets including both, shear strengths 

and shear stresses as well, the question arises how the shear stresses can be in-

corporated adequately in the evaluation. A common engineering approach in 

such a situation is simply not to distinguish between shear strengths and shear 

stresses and to evaluate all data combined. An attractive alternative to that ap-

proach might be to drop the shear stresses and to analyze only the subset of the 

shear strength values. As the paper will reveal, both engineering approaches are 

inappropriate. While the first approach overestimates the information content the 

shear stresses provide by treating them as “strength values”, the second ap-

proach takes no advantage of the information the shear stresses can contribute to 

the analysis. Taking into account that often considerable costs are involved in 

material, manufacture and testing of glulam beams, the latter approach appears 

economically highly ineffective. 

In the paper presented, the most important observation schemes of data are 

shortly discussed. It will turn out that observations for which only the lower 

bound of the failure strength is known (“strength equals at least a certain failure 

stress”) are referred to as Type I right-censored. The statistical analysis of data 

including Type I right censored observations is illustrated by the results obtained 

in a study where a total of thirty full-size structural glulam beams were tested. 

As it is common in statistics, the parameters of an appropriate distribution 

will be estimated first. A thorough model assessment is essential before evaluat-

ing the data further. The model assessment will be done by graphical and by 

analytical means, as well. Statistical inference for the estimated parameters will 
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be performed by measuring their accuracy with a joint confidence region and 

marginal confidence intervals, respectively. In the framework of semi-

probabilistic design of timber structures, the derivation of the characteristic 

shear value is of particular interest. The only meaningful way to establish char-

acteristic strength values adequately is to define them as lower one-sided confi-

dence intervals for a specified quantile of the chosen distribution. How this is 

accomplished in the presence of Type I right-censored observations concludes 

the paper. 

2. OBSERVATION SCHEMES OF DATA 

In practice, complete observations are most frequently encountered and 

their analysis is well described in most elementary textbooks on statistics. 

In contrast hereto, incomplete observations are often encountered in the 

study of lifetime data. The most prevalent type of incomplete observations arises 

when the exact lifetime of a specimen put on test is not observed but is known to 

exceed a certain time. Such an observation, for which only a lower bound of the 

lifetime is known, is referred to as right-censored. Right-censored lifetimes 

might arise, for example, if some specimens put on a Duration-of-Load (DOL-) 

test are still “alive” at the end of the observation period. Two different cases of 

right-censoring mechanisms need to be distinguished. An observation is termed 

Type I right-censored, if n  specimens are put on test and the experiment is ter-

minated after some time before all specimens have failed. A Type II right-

censoring mechanism is said to apply, when n  units are put on test and the ex-

periment is terminated as soon as r  of n  specimens have failed. 

In a different scenario, a specimen put on a DOL-test is inspected for fail-

ure after some time. If the specimen has failed before the first inspection only an 

upper bound of the failure time is known. Such observations are referred to as 

left-censored data. 

In some situations, specimens can be inspected only within certain time in-

tervals. For example, it might be impossible to survey the specimens put on a 

DOL-test continuously. Instead, it might be more convenient to inspect these 

specimens daily. If failure occurred within such an inspection interval, the ob-

servations are termed interval-censored data. 

Right-censored, left-censored or interval-censored observations represent 

the most prominent examples of incomplete data although a variety of other ob-
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servation schemes exists which also lead to the analysis of incomplete data (e.g. 

truncated data). Lawless [1] gives a complete overview of possible censoring 

mechanisms. 

The well-established procedures for the statistical analysis of censored life-

time data can be easily transferred to the statistical analysis of mechanical 

stresses. In the light of the glulam data, the shear strengths represent “observed 

lifetimes” whereas the shear stresses are equivalent to specimens whose 

observation of lifetime is terminated before the “actual” lifetime was reached. 

Hence, the shear stresses can be regarded as Type I right-censored observations. 

The remainder of this paper deals exclusively with this observation scheme. 

3. MATERIAL, TEST SETUP AND TEST RESULTS 

In the study conducted, a total of thirty full-size flexure tests on glulam 

were performed with the target to obtain shear failure. The dimensions of the 

glulam beams were width ⋅ depth ⋅ length = 140 mm ⋅ 456 mm ⋅ 3404 mm. The 

beams consisted of twelve laminations manufactured with spruce (Picea abies), 

each having a thickness of 38 mm. In order to prevent flexural failure, the lay-up 

of the laminations was combined : while the three outermost laminations in the 

tension and compression zone, respectively, consisted of machine graded timber 

of the strength class C35 according to the European standard EN 338 [2], the six 

core laminations were made of machine graded timber of the strength class C24. 

All specimens were manufactured using full-length laminations without any end 

joints. A melamin urea-formaldehyde adhesive approved for out-door applica-

tions was used for face bonding of the laminations. 

The test setup was chosen according to a proposal in [3] and is schemati-

cally shown in Fig. 1. The glulam beams were simply supported at both ends. 

The two loads were applied by hydraulic cylinders at a loading rate so as to 

reach the ultimate load within 300 ±  60 seconds. 

The shear strengths and shear stresses obtained in N/mm2 were, sorted in 

increasing order, as follows : 

94.568.555.555.544.533.518.509.502.502.5

97.492.486.480.478.477.462.453.453.450.4

49.433.423.421.420.413.411.487.383.340.3

**

****

******
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Fig. 1 Schematic test setup of full-size flexure tests on structural combined glulam  

The asterisks denote Type I right-censored observations (shear stresses at 

flexural failure). Among thirty specimens tested, only eighteen specimens failed 

in the targeted shear mode and twelve specimens failed in flexural mode. 

4. STATISTICAL ANALYSIS 

4.1 Type I Right-Censored Data and Maximum Likelihood Estimates 

Suppose, that a random sample X  comprises only complete observations 

which are independent and identically distributed with probability density func-

tion (p.d.f.) ( )θ;xf . The maximum likelihood estimate (m.l.e.) θ̂  is then ob-

tained by maximizing the likelihood function 

( ) ( )∏
=

=
n

i
ixfL

1

;θθ   (1a) 

In almost any case, it is more convenient to work with the log-likelihood func-

tion 

( ) ( )θθ Llog=ℓ   (1b) 

A familiar approach to maximization of the log-likelihood function ( )θℓ  is the 

Newton-Raphson iteration; it uses the iteration scheme 

( ) ( ) ,....2,1,1
1

11 =⋅−= −
−

−− jjjjj θUθHθθ  (2) 

where ( ) θθU ∂∂= ℓ  denotes the first derivative (or score) vector and 

( ) '
θθθH ∂∂∂= ℓ  denotes the second derivative (or Hessian) matrix. As a re-
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sult of the iteration, the m.l.e. θ̂  is obtained. Alternatively, numerical search 

procedures that do not use any derivatives might be applied to find θ̂ . 

More generally, suppose that some of the observations in the random sam-

ple X  are Type I right-censored. Under such a censoring mechanism, the likeli-

hood function takes the form 

( ) ( ) ( )∏
=

−
=

n

i
ii

ii xSxfL
1

1;; δδ
θθθ   (3) 

where iδ  is called the censoring or status indicator. The censoring indicator is a 

binary random variable that equals 1 if the observation ix  is uncensored (i.e. 

shear failure) and that equals 0 if the observation ix  is Type I right-censored 

(i.e. flexural failure). The term ( )θ;xS  in eq. (3) denotes the survivor function 

(s.f.) of the p.d.f. ( )θ;xf  which is readily obtained by the equation 

( ) ( ) ( ) dttfxXPrxS
x

∫
∞

=≥= θθ ;;   (4) 

Thus, for Type I right-censored observations the p.d.f. in the likelihood function 

( )θL  is merely replaced by its survivor function. It should be noted that under a 

right-censoring mechanism two random variables are involved : first, the ran-

dom variable X  and second, the binary censoring indicator δ . 

4.2 Statistical Model and Parameter Estimation 

Over the past decades, the two-parameter Weibull distribution with p.d.f. 

( ) ( )[ ] 0,exp,;
1

≥−







=

−

xx
x

xf
β

β

α
αα

β
βα  (5) 

has gained considerable importance in timber engineering. Hence, this distribu-

tion is chosen to model the frequency properties of the data including Type I 

right-censored observations reported at the end of chapter 3. Instead of working 

with the random variable X  directly, it often turns out to be more convenient to 

work with the transformed random variable XY log= . As will become evident, 

this transformation simplifies the estimation of m.l.e. θ̂  considerably. Perform-

ing the transformation XY log=  (for details see e.g. [4]) yields of what is 

known as Gumbel (or extreme value) distribution with p.d.f. 
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( ) ( ) ( )[ ] ∞<<∞−−= −−
yee

b
buyf

buybuy ,exp
1

,;  (6) 

where αlog=u  is the location parameter and β/1=b  is the scale parameter. 

The Gumbel distribution has the advantage to be of location-scale form whereas 

the Weibull distribution is of log-location-scale form. Distributions of the loca-

tion-scale family (e.g. normal distribution, logistic distribution) have the appeal-

ing feature that under a Type I right censoring mechanism simple closed-form 

equations of the score vector ( )θU  and the Hessian matrix ( )θH  exist. 

For location-scale distributions, the likelihood function eq. (3) including 

Type I right-censored observations takes the form 

( ) ( ) ( )∏
=

−







=

n

i
ii

i

i

zSzf
b

buL
1

1
00

1
, δ

δ

  (7a) 

where ( ) ( ) buxbuyz iii −=−= log . The functions ( )zf0  and ( )zS0  in eq. 

(7a) denote the standardized probability density and survivor function, respec-

tively. The corresponding log-likelihood function ( ) ( )θθ Llog=ℓ  (eq. (1b)) is 

readily seen to be 

( ) ( ) ( ) ( )[ ]∑
=

−++−=
n

i
iiii zSzfbrbu

1
00 log1loglog, δδℓ  (7b) 

where ∑
=

=
n

i
ir

1

δ . 

The components of the score vector ( ) θθU ∂∂= ℓ  are found to be 

( )
( )

( )
∑
=










∂

∂
−+

∂

∂
−=

∂

∂
=

n

i i

i
i

i

i
i

z

zS

z

zf

bu
U

1

00
1

log
1

log1
δδ

ℓ
 (8a) 

( )
( )

( )
∑
=










∂

∂
−+

∂

∂
−−=

∂

∂
=

n

i i

i
ii

i

i
ii

z

zS
z

z

zf
z

bb

r

b
U

1

00
2

log
1

log1
δδ

ℓ
 (8b) 

while the components of the Hessian matrix ( ) '
θθθH ∂∂∂= ℓ  take the form 

( )
( )

( )
∑
=










∂

∂
−+

∂

∂
=

∂

∂
=

n

i i

i
i

i

i
i

z

zS

z

zf

bu
H

1
2

0
2

2
0

2

22

2

11
log

1
log1

δδ
ℓ

 (9a) 
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( )
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log
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log1
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1221 HH = .  (9d) 

The standardized probability density and survivor function of the Gumbel 

distribution can be expressed as 

( ) ( ) ( ) ( )zzz
ezSeezf −=−= exp,exp 00  (10a,b) 

The first and second derivatives of ( )zf0log  and ( )zS0log  needed for calculat-

ing the components of the score vector ( )θU  (eqs. (8a,b)) and the Hessian ma-

trix ( )θH  (eqs. (9a-d)) follow from eqs. (10a,b) immediately 

( ) ( ) zz
e

z

zf
e

z

zf
−=

∂

∂
−=

∂

∂
2

0
2

0 log
,1

log
 (11a,b) 

( ) ( ) zz
e

z

zS
e

z

zS
−=

∂

∂
−=

∂

∂
2

0
2

0 log
,

log
 (11c,d) 

With the components of the score vector ( )θU  and the Hessian matrix 

( )θH  known, the Newton-Raphson iteration according to eq. (2) can be per-

formed. For the data under consideration, the m.l.e. ( ) ( )0919.0,666.1ˆ,ˆˆ == buθ  

of the Gumbel distribution is obtained. 

The simple transformations ( ) ( ) 289.5666.1expˆexpˆ === uα  and 

87610091901ˆ1ˆ ..bβ ===  finally yield the m.l.e. of the Weibull distribution. 
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Fig. 2 Nonparametric Kaplan-Meier (KM-) estimate and Weibull cumulative distribution 

function. Approximate one-sided lower confidence intervals for the 0.05-quantile at 

confidence levels 0.841α1 =−  and 0.95α1 =−  are shown as detail. 

4.3 Model Assessment 

Before performing statistical inference, a thorough assessment of the para-

metric model is essential. Descriptive plots are a common tool for model as-

sessment. Although being subjective, they provide a useful impression of the 

appropriateness of the chosen parametric model. Usually, a formal goodness-of-

fit test supplements such plots. Here, the latter is omitted in favour of an analysis 

of the shape parameter of the generalized log-gamma distribution which allows 

a discrimination between the Weibull distribution on the one hand and the log-

normal distribution on the other hand. The latter distribution is also frequently 

applied in timber engineering. 

4.3.1  Graphical Model Assessment 

Nonparametric frequency estimates for complete random samples are well-

known. In case of a random sample including Type I right-censored observa-

tions, however, these estimates are not applicable. Kaplan and Meier proposed 

in 1958 an approach which allows a nonparametric estimate of the cumulative 

distribution function (c.d.f.) for any right-censored random sample. For details 

of the calculation, see [1,5]. In Fig. 2, the Kaplan-Meier estimate is plotted as a 

step function with the Weibull c.d.f. overlaid. As can be seen, there is no graphi-

cal evidence against the two-parameter Weibull model. 
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4.3.2  Analytical Model Assessment 

The generalized log-gamma distribution is a further representative of the 

location-scale distribution family with location parameter u  and scale parameter 

b . In addition, it includes a shape parameter k . The shape parameter has the in-

teresting feature to allow a discrimination between the Weibull distribution and 

the log-normal distribution. Letting XY log=  and ( ) buYZ −= , the p.d.f. and 

s.f. of the generalized log-gamma distribution are given in standardized form as  

( )
( )

( )[ ]2121
21

0 expexp; −
−

−
Γ

= kzkzk
k

k
kzf

k

 (12a) 

( ) ( )( )21
0 exp,1; −−= kzkkIkzS   (12b) 

where ( ) ∫
∞

−−=Γ
0

1
udeuk

uk  and ( )
( ) ∫

−−

Γ
=

x
uk

udeu
k

xkI
0

11
,  denote the 

complete and incomplete gamma function, respectively. 

In the limit as the shape parameter ∞→k , ( )kzf ;0  approaches the p.d.f. of 

the standard normal distribution and as 1→k , ( )kzf ;0  approaches the p.d.f. of 

the Gumbel distribution. Similarly, the same holds true for the survivor function. 

Recall, that the normal and the log-normal distribution as well as the Gumbel 

and the Weibull distribution are related to each other by the simple transforma-

tion rule XY log= , respectively. Therefore, the shape parameter k  allows a 

discrimination beetween the log-normal and Weibull distribution, too. 

Performing the Newton-Raphson iteration according eq. (2) in association 

with the score vector and Hessian matrix for location-scale models presented in 

section 4.2, the maximum likelihood estimate of the generalized log-gamma dis-

tribution is found to be ( ) ( )069.1,0929.0,664.1,,ˆ == kbuθ . The shape pa-

rameter 069.1=k  is very close to 1 which indicates that the two-parameter 

Weibull model is appropriate. In contrast hereto, the log-normal model would be 

inappropriate for the Type I right-censored random sample under consideration. 

4.4 Statistical Inference 

Exact statistical inference procedures for random samples including Type I 

right-censored observations are mathematically intractable. There exists, how-

ever, a variety of approximate methods for the analysis of such data. Among the 

most important are score procedures, maximum likelihood based procedures and 
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likelihood ratio procedures. Wald-based inference procedures assuming ap-

proximately normally distributed pivotal quantities as well as bootstrap methods 

which apply simulation of the distributional properties of pivotal quantities pro-

vide convenient alternatives. 

Subsequently, the likelihood ratio statistic defined by 

( ) ( )
( ) ( ) ( )θθ
θ

θ
θ ℓℓ 2ˆ2

ˆ
log2 −=








−=Λ

L

L
  (13) 

is favoured. In large samples, the maximum likelihood estimate θ̂  is approxi-

mately multivariate normally distributed with ( )( )θθ
1; −

IN p  where 

( ) ( )'
θθθ ∂∂∂−= /2

ℓEI  denotes the Fisher (or expected) information matrix. 

The likelihood ratio statistic ( )θΛ  is then approximately 2χ -distributed. 

4.4.1  Approximate joint confidence region for θ̂  

The m.l.e. of a parameter vector is of little value unless it is known how ac-

curate it is likely to be. Hence, measurement of the extent of this uncertainty is 

an important part of the statistical problem. First, let us obtain an approximate 

joint confidence region for the m.l.e. ( ) ( )0919.0,666.1ˆ,ˆˆ == buθ  of the Gum-

bel distribution discussed in section 4.2. In terms of likelihood ratio procedures, 

an approximate joint confidence region is given as the contour of all points 

( )bu,  satisfying ( ) 2
1;, αχ −≤Λ pbu , where 

( ) ( ) ( )bububu ,2ˆ,ˆ2, ℓℓ −=Λ   (14) 

denotes the likelihood ratio statistic and 2
1; αχ −p  is the quantile of the 2χ -

distribution with p  degrees of freedom and confidence level α−1 . Figure 3 

shows the contour of the approximate confidence region for the m.l.e. θ̂  assum-

ing a confidence level of .95.01 =− α  As two parameters are involved, the 2χ -

distribution has 2=p  degrees of freedom. Under these assumptions, the quan-

tile becomes =2
95.0;2χ 5.991. 
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4.4.2  Approximate two-sided marginal confidence intervals for θ̂  

An approximate two-sided marginal confidence interval concerning u  is 

obtained by the likelihood ratio statistic 

( ) ( ) ( )( )0001
~

,2ˆ,ˆ2 ububuu ℓℓ −=Λ   (15a) 

where ( )0
~

ub  is the maximum likelihood estimate for b  when 0uu = . This is 

obtained by maximizing ( )bu ,0ℓ  with respect to b . The marginal confidence 

interval concerning u  is then given as the set of points satisfying 

( ) 2
1;01 αχ −≤Λ pu . In a similar way, an approximate two-sided marginal confi-

dence interval concerning b  is obtained by using 

( ) ( ) ( )( )0002 ,~2ˆ,ˆ2 bbubub ℓℓ −=Λ   (15b) 

where ( )0
~ bu  maximizes ( )0, buℓ  when 0bb = . Similarly, the marginal confi-

dence interval is given as the set of points satisfying ( ) 2
1;02 αχ −≤Λ pb . In Figs. 

4a,b, the likelihood ratio statistics ( )01 uΛ  and ( )02 bΛ  as well as their intersec-

tions with the limiting quantile 2
1; αχ −p  are shown graphically. 

 

Fig. 3 Approximate 0.95-joint confidence region (hatched contour) for the maximum likeli-

hood estimate θ̂  and approximate two-sided marginal 0.95-confidence intervals for 

the parameters û  and b̂  (dashed lines) 
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Again, the confidence level was assumed to be 95.01 =− α . As the parameters 

are now considered separately, the degree of freedom of the 2χ -distribution re-

duces to 1=p  so that the quantile becomes 841.32
95.0;1 =χ . 

The approximate two-sided marginal 0.95-confidence intervals for u  and b  

are found to be 713.1623.1 ≤≤ u  and 132.00677.0 ≤≤ b . These marginal confi-

dence intervals are shown in Fig. 3 with lines in dashed style along with the joint 

confidence region for the m.l.e. θ̂ . 

The transformations ( )uexp=α  and b1=β  yield the approximate two-

sided marginal 0.95-confidence intervals for the parameters of the Weibull dis-

tribution; they are obtained as 548.5α069.5 ≤≤  and 780.14561.7 ≤≤ β . It can 

be seen that the confidence interval of the location parameter α  is quite narrow 

indicating its precise estimation. The confidence interval for the scale parameter 

β , however, is fairly wide thus emphasizing the need of a greater sample size in 

order to obtain a more precise estimate. 

4.4.2  Approximate one-sided lower confidence interval for the 5%-quantile 

For location-scale models, the q th quantile qŷ  for XY log=  is 

bwuy qq
ˆˆˆ ⋅+=   (16a) 

Fig. 4a,b Approximate two-sided marginal 0.95-confidence intervals for the parameters  

û  and b̂  obtained by means of the likelihood ratio statistics ( )01 uΛ  and ( )02 bΛ  
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where û  and b̂  are the m.l.e. and ( )qFwq
1

0
−=  denotes the q th quantile of the 

standardized c.d.f. ( ) ( )zSzF 00 1 −= . For the Gumbel distribution, the q th 

quantile of the standardized c.d.f. takes the form 

( )[ ]qwq −−= 1loglog   (16b) 

The related q th quantile of the Weibull distribution is easily obtained by the 

transformation ( )qq yx ˆexpˆ = . 

Considering mechanical strength properties, the 0.05-quantile is usually of 

particular interest. Inserting the m.l.e. obtained in section 4.2 and eq.(16b) into 

eq. (16a) yields the quantile for Y  (Gumbel distribution) 

( )[ ] ( ) 393.10919.0970.2666.1ˆ1loglogˆˆ 05.0 =⋅−+=⋅−−+= bquy  (17a) 

The 0.05-quantile for X  (Weibull distribution) is  

( ) ( ) 2
05.0 N/mm03.4393.1expˆexpˆ === pyx  (17b) 

For the calculation of the quantile according to eq. (16a) the m.l.e. 

( )bu ˆ,ˆˆ =θ  is needed. The joint confidence region shown in Fig. 3 illustrates 

graphically where the m.l.e. θ̂  can be expected to lie in the parameter plane in a 

repetition of the experiment. From the hatched contour plotted it can be easily 

seen that the 0.05-quantile derived so far is totally inappropriate to establish a 

characteristic shear value as it is obtained entirely random. The link between the 

observed sample quantile and the population is provided by a one-sided lower 

confidence interval. 

An approximate one-sided lower confidence interval concerning qŷ  is ob-

tained by the likelihood ratio statistic 

( ) ( ) ( )( )byubuy qq

~
,~2ˆ,ˆ2 00 ℓℓ −=Λ   (18a) 

where ( )( )byu q

~
,~

0  maximizes ( )bu,ℓ  when 0qq
yy = . Since for location-scale 

models the relation bwuy qq ⋅+=  holds, we merely need to maximize  

( ) ( )bbwyb qq ,01 ⋅−= ℓℓ   (18b) 

with respect to b  in order to get b
~

, and then bwyu qq

~~
0 ⋅−= . 
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The approximate one-sided lower confidence interval consists of all values 0qy  

satisfying 

( ) ( ) 2
21;1000 ˆ αχ −≤Λ< qqq yyyI   (19) 

where ( )00 ˆqq yyI <  is a binary indicator function that equals 1 if the unequality 

is true and 0 if it is not true. 

In Fig. 5, the likelihood ratio statistic ( )0qyΛ  according to eqs. (18a,b) is 

shown graphically for 05.0=q . In many European standards (e.g. EC 5, EN 

1058, EN 14358), the confidence level 841.01 =− α  is proposed. Under this as-

sumption, the quantile of the 2χ -distribution becomes 12
683.0;1 =χ  which is 

shown as horizontal line in Fig. 5. The left intersection of this line with the like-

lihood ratio statistic ( )0qyΛ  yields the lower limit of the one-sided confidence 

interval. 

For the data under consideration, the approximate one-sided lower 0.841-

confidence interval is found to be 334.1841.0;05.0 =y . The transformation to the 

Weibull distribution yields ( ) 2
841.0;05.0 N/mm80.3334.1exp ==x . Alterna-

tively, for the more conservative confidence level 95.01 =− α  the lower limit of 

the one-sided confidence interval becomes 2
95.0;05.0 N/mm63.3=x . In Fig. 2, 

these confidence intervals are shown as detail in the inserted graphics. 

 

Fig. 5 Approximate one-sided lower 0.841-confidence interval for the 0.05-quantile ob-

tained by means of the likelihood ratio statistic ( )0qyΛ  
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5. CONCLUSIONS 

In the paper presented, it was reported on a total of thirty full-size flexure 

tests conducted on structural combined glued laminated timber in order to de-

termine its shear strength. Only 60% of the specimens were found to fail in the 

targeted shear mode whereas 40% of the specimens failed in flexural mode. The 

data set obtained, consisting of shear strengths and shear stresses at flexural fail-

ure as well, was identified as a random sample including Type I right censored 

observations. 

Random samples including Type I right censored observations are a special 

case of the more general statistical theory of incomplete data. While statistical 

evaluation routines for incomplete data are an important topic in many disci-

plines such as medicine, social sciences as well as in mechanical and electrical 

engineering, they are rarely if ever applied in timber engineering. Hence, the 

paper laid particular emphasis on the adequate statistical analysis of the incom-

plete shear data obtained in the flexural tests conducted on combined glued 

laminated timber. 

Both, graphical and analytical model assessment proved that a two-

parameter Weibull distribution, being of log-location-scale form, fitted the data 

adequately. The parameter estimation and statistical inference, however, were 

for sake of simplicity performed applying the Gumbel distribution being of loca-

tion-scale form. For this family of distributions, convenient closed-form equa-

tions exist. The results for the Weibull distribution were obtained by means of 

simple transformation rules, respectively. 

The contour of the joint parameter region was plotted in order to illustrate 

where the estimated parameter vector might be located in a repetition of the ex-

periment. The marginal confidence intervals revealed that the location parameter 

of the Weibull distribution was estimated rather precisely; the marginal confi-

dence interval for the scale parameter, however, was comparatively wide thus 

emphasizing the necessity of a greater sample size. 

The characteristic shear value was derived as one-sided lower confidence 

interval for the 5%-quantile of the Weibull distribution. For both confidence 

levels considered (84.1% and 95%), the characteristic shear values were found 

to be 2
,v N/mm80.3=kf  and 2

,v N/mm63.3=kf , respectively. Thus, both 
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values were slightly above the characteristic value 2
,v N/mm5.3=kf  specified 

in the new German timber design code DIN 1052 [6]. 
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