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SUMMARY

Acoustic emissions and ultrasound signals do not always have a high signal

to noise ratio. Furthermore, signal and noise are often in the same frequency

range. Due to the application of filters, the signal to noise ration can be im-

proved. As an introduction example of a causal filter the envelope determination

of an acoustic emission signal is discussed. Signal conditioning using a FIR fil-

ters with a linear phase shift and an anti-causal, zero-phase IIR filters is  then

discussed. The discrete wavelet-transform and the continuous wavelet-transform

are introduced as a further possibility for signal conditioning. The different FIR

and IIR filters are compared. This is verified for several applications. The results

of the wavelet denoising are also compared to the ones gained by classical fil-

tering. It can be stated that FIR and IIR filters are a stable and reliable tool for

signal conditioning of acoustic emissions and ultrasound signals. Wavelet de-

noising can be of equal quality as classical filters and offers a variety of further

applications. However, wavelets should be applied carefully due to the fact that

significant artefacts can be created during denoising.

ZUSAMMENFASSUNG

Schallemissonen und Ultraschall Signale haben nicht immer ein hohes Sig-

nal-Rausch Verhältnis. Darüber hinaus liegen Signal und Rauschen häufig im

selben Frequenzbereich. Mit Hilfe von Filtern ist eine Verbesserung des Signal-

Rausch Verhältnisses möglich. Als Einführungsbeispiel zu kausalen Filterfunk-

tionen wird die Berechnung der Envelope eines Schallemissionssignals vorge-
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stellt. Danach werden FIR Filter mit einer linearen Phasenverschiebung und an-

ti-kausale IIR Filter ohne Phasenverschiebung zur Signalkonditionierung vorge-

stellt. Neben diesen klassischen Filtern wird noch auf die diskrete und die konti-

nuierliche Wavelet-Transformation als weitere Möglichkeiten zur Signalkondi-

tionierung eingegangen. Anhand von ausgewählten Signalbeispielen werden die

Ergebnisse der verschiedenen Filterfunktionen miteinander verglichen. Dabei

hat sich gezeigt, dass FIR und IIR Filter stabile und zuverlässige Ergebnisse bei

der Signalkonditionierung von Schallemissionen und Ultraschall Signalen lie-

fern. Eine Entrauschung mittels Wavelets kann mindestens gleichwertige Er-

gebnisse produzieren wie der Einsatz klassischer Filter und ermöglichst zudem

eine Reihe weiterer Anwendungen. Dennoch sollte vorsichtig mit Wavelets ge-

arbeitet werden, denn sehr leicht können besonders beim Entrauschen Artefakte

im Signal generiert werden.

RESUME

Des emissions acoustiques et des signals ultra-son n'ont pas toujour une

relation haute entre le signal et le bruit. Signal et bruit sont recurrents en meme

gamme de frequence. A cause d'utiliser des filtres de frequences on peut amelio-

rer la relation entre le signal et le bruit. Pour introduir le principe des filtres de

frequences l'enveloppe d'un emission acoustique est calcule. Apres, des filtres de

frequences FIR avec dephasage lineaire et des filtres de frequences anti-causal

sans dephasage ont presente. La transformation wavelet, discrete et continue et

aussi presente. Les filtres de frequences et la transformation wavelet ont com-

pare aux resultats d'appliquation a des signals. On peut dire que les filtres FIR et

IIR sont stable et digne de confiance en application a des emissions acoustiques

et des signals ultra-sons. Filtrer avec la transformation wavelet peut gagner les

meme resultats que filtrer avec des filtres de frequences classique et offre des

applications supplementaires. Mais, on doit user la transformation wavelet avec

prudence parce qu'on peut generer des artefacts tres vite.
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1. INTRODUCTION

Acoustic emissions are defined as the spontaneous release of localized

strain energy in stressed material. Due to micro cracking in the material this en-

ergy release can be recorded by transducers on the material's surface [Grosse,

2002]. Acoustic emission analysis is capable of revealing damage processes in

materials during the entire load history.

Fig. 1: Top left: acoustic emission example with a high signal to noise ratio and a clear onset.

Top right: acoustic emission example with a medium signal to noise ratio and disturbances.

Bottom left: acoustic emission example with a low signal to noise ratio. The high frequency

noise hides the onset. Bottom right: acoustic emission example disturbed by a low frequent

sinusoidal signal.

One severe problem in acoustic emission analysis is that huge data sets

(often more than 1000 acoustic emission events) with a low signal to noise ratio

are detected. Acoustic emission data, e. g. from concrete, normally contains a lot

of high frequency noise, mainly caused by the measurement equipment (pream-

plifier etc.) and the surrounding. Due to the testing process itself a low frequent

signal, caused by the testing device (loading machine), may often superimpose

the acoustic emission signal additionally. Fig. 1 shows four examples of possible

acoustic emission of concrete including different kinds of noise. The signals also

differ in frequency content from each other.
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Ultrasound signals emitted by an actuator and recorded by a transducer

have generally a better signal to noise ratio than acoustic emissions. However, in

certain cases, e.g. at the beginning of setting and hardening tests of concrete

where concrete is like a fluid paste with solid particles [Reinhardt and Grosse,

2004], the signal to noise ratio of ultrasound signals is low. I.e. if the ultrasound

signal is damped and scattered the signal to noise ratio decreases. Fig. 2 shows

two ultrasound signals of a setting and hardening test of concrete, one from the

beginning with a low signal to noise ratio and one from a later stage where the

concrete is already hardened.

Fig. 2: Top: ultrasound signal transmitted through hardened concrete with a high signal to

noise ratio. Bottom: ultrasound signal transmitted through fresh concrete. Notice the low am-

plitude due to damping of the material.

Concerning further analysis steps, the better the signal to noise ratio the

better the results. Therefore, to enhance the signal to noise ratio, filters in a gen-

eral sense are used. A variety of tools exist. The ones used most frequently are

IIR (Infinite Impulse Response) and FIR (Finite Impulse Response) filters

[Mathworks, 2000], the wavelet-transform [Percival and Walden, 2002; Misiti et

al., 2000] or methods of statistical signal processing [Buttkus, 1991; Mathworks,

2000]. Filters are used in different fields of application where transient signals

similar to acoustic emissions and ultrasound signals occur e.g. seismology,
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acoustics and optics. However, concening acoustic emissions signal and noise
are often in the same frequency range [Grosse, 1996]. This has to be taken into
consideration if filters are applied to such signals.

Furthermore, filters can easily modify a signal in a way which may lead to
wrong results, e.g. due to phase shifts and amplitude distortions. The experi-
ences gained about the application of filters on acoustic emission data and on
ultrasound signals will be discussed in the following. The influences of the dif-
ferent signal processing procedures will be shown on several examples.

2. APPLICATION OF FILTER FUNCTIONS TO ACOUSTIC EMIS-

SIONS AND ULTRASOUND SIGNALS

Filters are, in the most general sense, devices or algorithms which act on
some input signal to produce a output signal [Scherbaum, 1996]. The mathe-
matical foundation of filtering is convolution. I.e. concerning digital signal
processing, a filter's output is related to its input by convolution with its impulse
response. Applications of this principle in different forms will be shown in the
following.

2.1 The envelope of the signal

A relative simple form of signal conditioning is the calculation of the sig-
nal's envelope by the Hilbert transform.

The Hilbert transform Ř of a real time dependent function R(t) is defined as
[Buttkus, 1991]:

The Hilbert transform is represented by a convolution integral, i.e the Hil-
bert transform is a causal transfer function which behaves like a filter. Trans-

forming a time series by the Hilbert transform, a phase shift of π/2 is generated.

Thus, the envelope time function E(t) can be calculated [Buttkus, 1991]:

Squaring and norming of the envelope of the signal leads to a suppression
of noise of lower amplitude and to an increase of the signal content of higher
amplitude (Fig. 3). The high frequency noise is suppressed and the signal is ac-
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cented. Then, the envelope can be used to estimate the onset of the signal or for
signal detection in general. Calculating the signal's envelope is a fast and simple
way and therefore often applied to signal conditioning.

Fig. 3: Top: Acoustic emission signal from Fig. 1 (bottom left).  Bottom: Squared and normed

envelope of the signal calculated by the Hilbert transform.

However, if there are further disturbances on the signal other signal condi-
tioning approaches should be used. Calculating the envelope the way described
above is normally free of any errors of mistreating the signal. This cannot be
guaranteed for the methods described in the following.

 2.2 Application of IIR and FIR filters

IIR and FIR filters can be used to erase high frequent noise and/or low fre-
quent disturbances in form of a low-, a high-, a bandpass or a bandstop filter.
Such filter functions are the main computational workhorses for classical digital
signal processing [MathWorks, 2000]. Before digital signal processing became
possible, such filters were already used as analog filters.

The mathematical tool to calculate the discrete transfer function of a dis-
crete system is the z-transform. The z-transform Y(z) of a digital filter's output
y(n) is related to the z-transform X(z) of the input by [MathWorks, 2000]:
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where H(z) is the filter transfer function and z is a continuous complex
variable. The constants b(i) and a(i) are the filter coefficients. The order of the
filter is the maximum of na and nb. Even if there are several exceptions as a
rough guideline it can be said:

• nb=0 means, that the filter is an IIR, all-pole, recursive filter

• na=0 means, that the filter is a FIR, all-zero, nonrecursive filter

• na > 0 and nb > 0 means, that the filter is an IIR, pole-zero, recursive filter

Scherbaum [1996] summarized the main characteristics of FIR and IIR fil-
ters as follows:

• FIR filters are always stable. However concerning steep filters many coeffi-
cients are needed. Filters with given specifications such as linear phase or
even zero phase can easy be implemented.

• Steep IIR filters can easiliy be implemented with a few coefficients. There-
fore, filtering is very fast. However IIR filters are potentially unstable and
given specifications such as zero phase are difficult to implement.

Concerning digital signal processing a variety of tools e.g. in Matlab
[MathWorks, 2000], LabVIEW [National Instruments, 2004] or for free in the
world wide web [Mathtools, 2004; MathWorks, 2004] are available. Further-
more, the Numerical Recipes [Numerical Recipes, 2004] for different program-
ming languages and the DSP group [DSP group, 2004] provide free filter algo-
rithms. The corresponding adresses in the world wide web can be found in the
references. This list is not exhaustive. This is only a compilation of resources
which I frequently use for solving problems in digital signal processing of
acoustic emissions and ultrasound signals. Several of these sources of informa-
tion about filter functions also contain descriptions and algorithms of the wave-
let-transform which will be discussed in section 2.3.

The signals shown in Fig. 1 were used for demonstrating the capabilities of
the different filter functions. The software tool used here was Matlab. FIR filters
with a linear phase shift and anti-causal, zero-phase IIR filters (in the following
called IIR filter) were used an compared.
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The FIR filter is a causal filter and produces therefore a linear phase shift
of n/2 where n denotes the filter order, e.g. n=100 means a shift of 50 samples.
The anti-causal, zero-phase IIR filter produces no phase shift. However, in gen-
eral the amplitude is smaller than the one of an FIR filtered signal. Fig. 4 (mid-
dle) shows the already phase corrected FIR filtered section of the signal around
the onset (dotted line) of Fig. 1 (top right) and the the same section of the origi-
nal section (solid line). The non-filtered signal is shifted 0.1 V upwards to allow
a better comparison of the two waveforms. The FIR filter does not distort the
original waveform. The shape and the amplitude of the signal are kept. The
curve is smoothed according to the filter characteristics.

Fig. 4: Top: acoustic emission signal from Fig. 1 (top right). Middle: Kaiser window FIR

bandpass filtered signal (corner frequencies: 5 kHz and 300 kHz) Bottom: Comparison of on-

set region filtered by the FIR bandpass filter (dotted line) and an anti-causal, zero-phase IIR

bandpass filter with the same corner frequencies (solid line). The IIR filtered signal was arti-

ficially shifted by 0.1 V to allow a better comparison of the filtered signals.

The comparison of the FIR and the IIR filtered signal (Fig. 4, bottom)
shows that both filters are equal in quality. I.e. none of them produces a non-
linear phase shift and the amplitude damping of the IIR is low compared to the
FIR.
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The capabilities of the FIR and the IIR bandpass filter are confirmed by results
of the FIR and IIR lowpass filter (Fig. 5). The amplitude differences between the
FIR filtered signal and the IIR filtered one are very small (Fig. 5, middle and
Fig. 5, bottom). Again non-linear phase shift is not observable.

Fig. 5: Top: Acoustic emission signal (see also Fig. 1, bottom left) with a low signal to noise

ratio. Note the low amplitude. Middle: lowpass (corner frequency: 150 kHz) filtered signal

using a Kaiser window FIR filter. Bottom: lowpass (corner frequency: 150 kHz) filtered sig-

nal using a Butterworth IIR filter.

Filtering the Signal shown in Fig. 1 (bottom right) with a FIR and an IIR
highpass filter shows differences in the amplitudes of the FIR and the IIR fil-
tered signal (Fig. 6). This highpass filtered signal is an example for possible ef-
fects of an IIR filter compared to a FIR filter. Especially the coda of the IIR fil-
tered waveform in Fig. 6 (bottom) shows significant lower amplitudes than the
coda of the FIR filtered waveform (Fig. 6, middle). A detailed look at the main
part of the signal also shows this effect. However, again no nonlinear phase shift
could be verified.
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Fig. 6: Top: Acoustic emission signal disturbed by relative low frequent noise (see also Fig.

1, bottom right). Middle: highpass (corner frequency: 15 kHz) filtered signal using a Kaiser

window FIR filter. Bottom: highpass (corner frequency: 15 kHz) filtered signal using a But-

terworth IIR filter.

2.3 The Discrete wavelet-transform

Wavelets are mathematical functions that have to be well localized (other
requirements are of technical matter). The mathematical steps used for the
wavelet transform can be summarized as follows:

i. a fully scalable modulated window solves the signal cutting problem

ii. this window is shifted along the signal and for every position the spectrum is
calculated

iii. the process is repeated many times with a slightly shorter or longer window
for every new cycle

iv. this results in a collection of time-scale representations (scale is proportional
to frequency) of the signal, all with a different solution

These four points represent the principle of the wavelet transform. General
concepts known from Fourier analysis form the application base. Therefore, the
basic concepts of convolution and filtering of finite sequences and some basics
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about orthonormal functions are needed. The mathematical concept presented in
the following is adopted from Percival and Walden [2002].

The DWT is an orthonormal transform of the form:

The first two points of the above enumeration show that a periodized filter
is needed which is indeed the wavelet. The N x N matrix W consists of these
periodized filters. The third point indicates that the filter is rescaled for every
new cycle. That means the matrix W consists of the wavelet and the scaling fil-
ter. The wavelet filter is a high pass filter with a nominal pass-band while the
scaling filter is a low pass filter with a different nominal pass-band. Applying
them on the time series X, the Wavelet coefficients W are gained which are a
collection of time-scale representations of the signal, all with a different solu-
tion. In other words: the wavelet is scaled and shifted and then moved along the
time series. Therefore, the wavelet-transform is essentially a bandpass filter of
uniform shape and varying location and width [Torrence and Compo, 1998].

The main difference between the discrete and the continuous wavelet trans-
form (CWT) is that due to redundancies in the CWT the DWT can be thought of
as a subsampling of the wavelet coefficients with dyadic scales. That means
each vector of W contains 2j elements, j = 1,...,J. Each element is one wavelet
coefficient. The rows of W that produce the wavelet coefficients (the wavelet
filter) for a particular scale are circularly shifted versions of each other. The
amount of the shift between adjacent rows is 2j for j = 1, ..., J. Furthermore,
changes concerning the wavelet scale (the scaling filter) are also of dyadic order
in the same range as for the wavelet filter. The DWT is computed using the
Mallat algorithm that is faster than the fast Fourier transform. Nevertheless, a
time series can be perfectly reconstructed from its DWT coefficients. This is an
advantage of the DWT compared to the CWT.

A detailed description of the wavelet theory can be found in Percival and
Walden [2002]. A broad compilation of articles, tutorials and links can be found
in the world wide web at the homepage of Amara Graps [2004]. Beside the
commercial wavelet tools of Matlab and LabVIEW there is also a free wavelet
toolbox available: Wavelab 802 [2004].

Using the wavelet-transform for denoising requires an adopted model for the
current noise of the dataset. Concerning the example shown in Fig. 7 a bior-
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thogonal wavelet of the order 4.4 was wavelet-transformed using a level 8
DWT. The applied denoising algorithm was Stein's Unbiased Risk Estimator
with hard thresholding for an unscaled white noise model. Furthermore, the ap-
proximation coefficient of level 8 was set to zero to erase the offset of the signal
(Fig. 7, middle). The wavelet denoised signal in Fig. 7 (bottom) was artificially
shifted by 0.2 V to allow a better comparison. The direct comparison of the
wavelet denoised signal and the FIR filtered signal (Fig. 7, bottom) shows only
slight differences in amplitude smoothing. I.e. the FIR filter produces a
smoother curve. Furthermore, the comparison shows that no phase shift is ob-
servable. This is guaranteed due the use of biorthogonal wavelets.

Fig. 7: Top: acoustic emission signal from Fig. 1 (top right). Middle: wavelet denoised signal

using a biorthogonal wavelet of the order 4.4. Bottom: Comparison of the wavelet denoised

signal (solid line) to the FIR filtered signal already shown in Fig. 4. Only the region around

the onset of the signal is shown. The wavelet denoised signal was artificially shifted by 0.2 V

to allow a better comparison of both signals.

Choosing a different noise model for wavelet denoising can lead to signifi-
cant different results. Fig. 8 shows a comparison of the bandpass FIR filtered
signal (dotted line) already used for comparison in Fig. 7 (bottom) and the corre-
sponding wavelet denoised version of the signal differing only in the choosen
noise model from the wavelet procedure described above. Instead of using un-
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scaled white noise for thesholding non-white noise was used. The result differs
significant from the one shown in Fig. 7. The similarity between the FIR band-
pass filtered signal and the wavelet denoised signal from Fig. 7 (bottom) could
not be maintained with the non-white noise theshold. The amplitude of the
wavelet denoised signal is damped and distorted. Due to the non-white noise
thresholding, several artefacts also occured in the shape of the signal. E.g. the
area right in front of the onset of the signal changed completely its shape. Fur-
thermore, the structure of the noise is completely different. This makes clear that
if choosong the wrong model of noise for thresholding the important character-
istics of the signal can be conditioned badly. Then, e.g. a wrong onset time of
the signal will be determined.

Fig. 8: Comparison of the FIR filtered signal already shown in Fig. 4 (dotted line) and the

corresponding wavelet denoised signal. The area around the onset of the signal is displayed.

The change compared to the denoising shown in Fig. 7 is that the noise was modelled as non

white noise.

2.4 The Continuous wavelet-transform

The principal ideas behind the DWT and CWT are identical. Therefore, the
possibilities and the procedures concerning filtering and denoising of acoustic
emissions and ultrasound signals do not differ from each other. The continuous
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wavelet-transform of a discrete sequence R(t) is defined as the convolution of

R(t) with a scaled and translated version of the wavelet function ψλ,ν [Torrence

and Compo, 1998]:

The continuous wavelet-transform also means continuously shifting a con-

tinuously scalable function ψλ,ν over the signal and calculating the correlation

between the two. The discrete sequence R(t) is decomposed into a set of basis

functions ψλ,ν, called the wavelets. Thus, λ denotes the scale (scale is propor-

tional to frequency) and ν the translation. The discrete sequence R(t) is decom-

posed into a set of basis functions with the new dimensions λ and ν. Thus, all

scales are accounted for the transform. The CWT gives an high resolution image
of the frequency distribution over time. Therefore, it is much slower than the
DWT or a short-time Fourier transform. However, if there is no idea about the
frequency distribution over time of the important parts within the investigated
signal the CWT is a helpful tool to make clear the frequency changes over time.

Examples of application concerning filtering and denoising of acoustic
emissions and ultrasound signals with the CWT can be found in Ruck and Rein-
hardt [2002, 2003].

The CWT offers the possibility to apply a complex tranform using complex
wavelets. One possible application will be given in the following.

Since the complex continuous wavelet transform is a complex valued or-
thonormal transform represented by a convolution integral, the modulus of one
scale of the complex continuous wavelet transform represents the envelope of a
signal at one certain frequency.

The envelope calculated by the complex continuous wavelet-transform
(Fig. 9) could also be calculated by filtering the original signal with a bandpass
filter and then calculating the envelope using the Hilbert transform. However,
the advantage of the complex continuous wavelet transform is that the filter
bonds do not need to be known in advance. The corresponding scale can be cho-
sen instead.
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Fig. 9: Top: Acoustic emission signal from Fig. 1 (bottom left).  Bottom: Squared and normed

envelope of the signal calculated from one scale of the complex continuous wavelet-

transform.

3. CONCLUSION

Signal conditioning is a crucial part during data analysis, due to the fact
that mistakes there have got a severe impact on the results gained during the
further analysis. Furthermore, concerning acoustic emissions or ultrasound sig-
nals signal and noise are often in the same frequency range [Grosse, 1996].
These facts require stable and reliable algorithms for signal conditioning.

Calculating the envelope using the Hilbert transform is a descriptive form
of filtering due to the fact that the Hilbert transform is a causal transfer function

which behaves like a filter and produces a phase shift of π/2. Squaring and

norming of the envelope suppresses low amplitude noise. Using the complex
continuous wavelet-transform leads also to the envelope, however only of a
certain frequency.

The applied FIR filters are also causal filters and produce a linear phase
shift of half the filter order, i.e. if the filter order is 100 the signal is shifted 50
samples. The filtered sequence has to be corrected by this number of samples.
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FIR filters from the used Matlab package [MathWorks, 2000] do not cause any
non-linear phase shift or amplitude distortion. Therefore, they are a reliable tool
for signal conditioning. IIR filters normally cause highly nonlinear phase distor-
tions. However, using an anti-causal, zero-phase filter implementation of an IIR
filter the nonlinear phase distortions are corrected. This cannot be guaranteed for
all cases. Regarding the examples shown in Fig. 4 to 6 no nonlinear behaviour of
the anti-causal, zero-phase IIR filter could be verified. A further requirement for
the successful use of such IIR filters is that the filtered signal has a length of at
least three times the filter order and tapers to zero on both edges [MathWorks,
2000]. Nevertheless, the anti-causal, zero-phase IIR filter can cause amplitude
damping. This could only be verified for the highpass filter (Fig. 6).

The wavelet-transform is essentially a bandpass filter of uniform shape and
varying location width [Torrence and Compo, 1998]. Denoising by thesholding
can produce as good results as a bandpass filter (Fig. 7) if the correct noise
model was chosen. Furthermore, the denoising technique has the advantage over
traditional filtering in that it removes noise at all frequencies and can be used to
isolate single events that have a broad power spectrum or multiple events that
have varying frequency [Torrence and Compo, 1998]. However, if the noise was
classified wrong, i.e. if the the wrong noise model was chosen the denoising
procedure can produce significant artefact. E.g. artificial signal onsets are cre-
ated. The Stein's Unbiased Risk Estimator algorithm is able to chose the thresh-
olds for every level adaptively. The selection rules are more conservative and
are more convenient when small details of signal lie in the noise range. How-
ever, if the wrong noise classification was chosen wavelet denoising will pro-
duce significant artefacts which will lead to wrong results.

Finally it has to be stated that signal conditioning is not able to improve the
signal to noise ratio of all signals. Fig. 2 (bottom) is an example for the case
where signal conditioning would not be successful. It is not not possible to valu-
ate the results of signal conditionig if the signal has got such a low amplitude
and is heavily distorted in a way that makes the separation of signal and noise
impossible. In such cases an improved recording procedure is recommended.
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