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SUMMARY

This paper addresses the determination of characteristic values for struc-

tural timber as stated in the European standard EN 14358. For the user of this

standard, however, the specific statistical result of the calculation is not evident,

as the terminology applied is misleading. In addition, the fundamentals of the

subject are rarely presented in literature. Hence, a comprehensive derivation of

the statistical factors underlying the evaluation procedure proposed in EN 14358

is given. Statistical assumptions and the mathematical background are illustrated

in full detail. Characteristic values are shown to be lower one-sided confidence

intervals for the 5%-quantile; not the 5%-quantile as stated by the current stan-

dard.

The tables which present the statistical factors in EN 14358 are rather in-

complete and specify numerical values only for a few sample sizes. In order to

make the application of EN 14358 more convenient and numerically more pre-

cise, complete tables with statistical factors ranging up to a sample size of 100

are given for both confidence levels applied in the standard.

ZUSAMMENFASSUNG

Der Aufsatz beschäftigt sich mit der Bestimmung charakteristischer Re-

chenwerte von Bauholz für tragende Zwecke. Dabei wird auf das Auswertever-

fahren Bezug genommen, welches in der europäischen Norm EN 14358 angege-

ben ist. Für den Anwender der Norm geht aus dem Normentext jedoch nicht

zweifelsfrei hervor, was das Ergebnis der Rechnung im statistischen Sinne ist,

da die Terminologie der Norm nicht korrekt ist. Da zudem die Grundlagen des
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Auswerteverfahrens in der Fachliteratur, wenn überhaupt, nur bruchstückhaft

behandelt werden, wird hier eine vollständige Herleitung der statistischen Fakto-

ren, die dem Verfahren zugrunde liegen, angegeben. Dabei werden sowohl die

statistischen Annahmen als auch der mathematische Hintergrund dargestellt.

Aus der Herleitung der statistischen Faktoren geht hervor, daß nicht, wie in der

Norm angegeben, die 5%-Fraktile, sondern vielmehr ein einseitiges unteres

Vertrauensintervall der 5%-Fraktile als charakteristischer Rechenwert erhalten

wird.

Die in EN 14358 angegebenen Tabellen sind lückenhaft und weisen nur für

einige wenige Stichprobenumfänge statistische Faktoren aus. Um die Anwen-

dung der Norm zu erleichtern, werden vollständige Tabellen bis hin zu einem

Stichprobenumfang von 100 Proben für die beiden in EN 14358 angewandten

Vertrauensniveaus angegeben.

RÉSUMÉ

Cet article porte sur la détermination des valeurs caractéristiques de dimen-

sionnement pour le bois de structure, telles qu’elles sont définies dans la norme

européenne EN 14358. Pour l’utilisateur de cette norme cependant, il n’est pas

évident d’appréhender le résultat de ce calcul, au sens statistique, dans la mesure

où la terminologie appliquée n’est pas explicite. De plus, les bases théoriques du

sujet sont rarement traitées dans la littérature. Cet article propose donc de pré-

ciser, de manière compréhensible, les paramètres statistiques qui sous-tendent la

procédure d’évaluation de la norme EN 14358. Ainsi, les hypothèses statistiques

et les fondements mathématiques sont illustrés de manière détaillée. L’analyse

montre clairement que ce n’est pas le fractile à 5%, mais une borne inférieure de

l’intervalle de confiance de ce fractile, que l’on obtient comme valeur caracté-

ristique.

Les tableaux présentant les paramètres statistiques dans la norme EN 14358

sont plutôt incomplets, et ne spécifient des valeurs numériques que pour

quelques tailles d’échantillonnage. Afin de rendre l’application de la norme EN

14358 plus simple et plus précise, des tableaux complets comportant des

paramètres statistiques jusqu’à une taille d’échantillons de 100 sont proposés,

pour les deux niveaux de confiance appliqués dans la norme.

KEYWORDS: structural timber, characteristic values, transformation of random vari-

ables, noncentral t-distribution, quantiles, tolerance intervals
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1. INTRODUCTION

In semi-probabilistic design of structures, the proper determination of char-

acteristic values plays a crucial role. For structural timber, the European stan-

dard EN 14358 [5] describes a proper evaluation procedure for the determina-

tion of characteristic values. However, the terminology applied in the standard is

ambiguous as the term “5%-quantile” is used in a misleading manner. Although

a footnote provides some explanation, it remains difficult for the user to under-

stand the assumptions on which the statistical factors presented are based, as

well as their final effect.

Of course, it is imperative to understand the meaning of such statistical

factors before applying them in an evaluation. Hence, the first aim of this paper

is to present a comprehensive derivation of the statistical factors as given in EN

14358. Since the tables of this standard provide only a few numerical values, the

second aim is to make complete tables available for sample sizes ranging up to

100 specimens and for the two confidence levels proposed in the standard.

2. GENERAL STATISTICAL BACKGROUND

Suppose that X is a normally distributed random variable. In the context

here, the aim is to estimate a lower or an upper limit value L so that at least a

proportion γ of the population is greater or smaller than L. For example, an up-

per limit value L with a specified proportion of 0.95γ =  describes a level at

which 95% of the population lie below L. In statistics, such limit values L are

often referred to as lower one-sided or upper one-sided tolerance intervals.

In the calculation of such tolerance intervals, three cases generally need to

be distinguished [3]:

1. The random variable X is normally distributed with known mean µ and

known standard deviation σ ( ( )σµ,~X N , where the symbol “~” is read as

“is distributed as”)

2. The random variable X is normally distributed with unknown mean µ but

known standard deviation σ ( ( )σ,x~X N )

3. The random variable X is normally distributed with unknown mean µ and

unknown standard deviation σ ( ( )s,x~X N )

The first case is trivial as it leads directly to the determination of the lower

or upper quantile of the entire known population, characterized by population



WOLFGANG KLÖCK

46

mean µ and population standard deviation σ. Nevertheless, it is used in this pa-

per as an introductive example into the subject and to illustrate some basic sta-

tistical concepts. The second case which is of remarkable interest in many appli-

cations (e.g., quality control) was not accounted for in the European standardi-

zation and, hence, is omitted in this paper. In practice, the third case is by far the

most interesting one as it reflects the situation most frequently encountered in

empirical sciences : from a limited random sample 
n1

x,...,x , sample mean x

and sample standard deviation s are obtained and the aim is to estimate a limit

value l  above or below which a specified proportion γ of the population lies

with confidence α1− . The third case forms the basis for the determination of

the statistical factors presented in EN 14385 and therefore will be discussed in

full detail.

3. CALCULATION OF TOLERANCE INTERVALS

The European standard EN 14385 instructs the user to apply the lognormal

distribution in order to model the frequency properties of the random variable X.

However, the following results are independent of the type of normal distribu-

tion (normal or lognormal distribution). For sake of simplicity, subsequently

only the normal distribution will be considered. In order to avoid any confusion

with positive and negative signs, the calculation of an upper tolerance interval

will be discussed. Of course, the resulting statistical factors can be used in the

same manner to calculate lower tolerance intervals which are of interest when

strength properties are concerned.

3.1 Normally distributed random variable X with known µ and σ

As an introductive example, a normally distributed population with known

mean µ and known standard deviation σ is considered. The upper one-sided tol-

erance interval L, below which the proportion γ of the distribution lies, is then

determined by the equation

σKµL γ ⋅+= (1)

In order to obtain the appropriate factor Kγ, the probability

( ) γσKµL
γ

=⋅+≤Pr (2a)

needs to be calculated. This equation is equivalent to



Determination of Characteristic Values for Structural Timber

Otto-Graf-Journal Vol. 15, 200447

γK
σ

µL
γ

=







≤

−
Pr (2b)

Since the quotient in eq. (2b) is a standardized normal random variable

( ( ) ( )1,0~σ/µL N− ), the factor Kγ is obtained as the solution of the equa-

tion

( ) γxde
π2

1
:γ1;0,

γ
2

K

2

x

== ∫
∞−

−

N (2c)

The determination of the factor Kγ is equivalent to the calculation of the

upper quantile ( )γ1;0,N  of the standardized normal distribution. For example,

setting in eq. (2c) the proportion 0.95γ =  and solving for the upper integration

limit yields the well-known factor 1.645K
γ
= .

3.2 Normally distributed random variable X with unknown µ and σ

In practice, the entire population characterized by mean µ and standard de-

viation σ is rarely known. Rather, a limited random sample 
n1

x,...,x  with sam-

ple mean x  and standard deviation s is given. An upper limit value l , below

which a specified proportion γ of the random sample lies, may be obtained in an

entirely analogous manner as described in section 3.1

sKx
γ
⋅+=l (3a)

Contrary hereto, the aim is now to perform the statistical inference from the

random sample to a specified proportion of the population. In other words, we

seek an estimate 
α1−

l  for the unknown limit value L of the population below

which the proportion γ lies with confidence α1−

skx
α1

⋅+=
−

l (3b)

The estimate 
α1−

l  shall be at least equal L with confidence α1− . As prob-

ability, this is expressed in the following equation [1,2]

( ) ( ) α1σKµskxL γα1 −=⋅+≥⋅+=≥
−

PrPr l (4)

which allows the determination of the appropriate factor k. Equation (4) can be

rearranged to read
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α1k
s

σKµx
γ

−=







≤

⋅++−
Pr (5)

In order to perform the calculation of this probability, it is necessary to know

how the quotient on the left hand side of the inequality in eq. (5) is statistically

distributed. To make that evident, the expression in brackets can be algebraically

expanded in an appropriate manner by σ, n  and 1n −  [1]

( ) α1nk1n

σ

s
1n

nKn
σ

µx

nkU
γ

−=



















≤−

−

+
−

−
=≤ PrPr (6)

Applying the theory of functions of multivariate random variables [3,4] and in-

troducing degrees of freedom 1nf −= , the quotient U in eq. (6) can be re-

written

f
Y

δX
U

+−
= (7)

It can be verified by the transformation of a univariate function of one ran-

dom variable [3,4], that the random variable X in the numerator of eq. (7) is dis-

tributed as a standardized normal distribution ( )10,N  with the probability den-

sity

( ) 2

x

X

2

e
π2

1
xf~n 

σ

µx
X

−

=

−

= (7a)

The random variable Y in the denominator of eq. (7) has a χ-distribution with

1nf −=  degrees of freedom and with probability density

( ) 2

y

1f

1
2

fY

2

ey

2

f
Γ2

1
yf~

σ

s
fY

−

−

−









== (7b)

where ( ) ∫
∞

−−

=

0

1xt
tdtexΓ  denotes the complete Euler Gamma function.

The constant nKδ
γ

=  in eq. (7) is termed noncentrality parameter, where Kγ

is determined as outlined in section 3.1.
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According to a famous proof of statistics [4], the sampling functions x  and

s are stochastically independent. Consequently, the transformed random vari-

ables X and Y are stochastically independent, too. In this case, the joint prob-

ability density ( )yx,f YX,  is therefore simply given as the product of the prob-

ability densities of X and Y

( ) ( ) ( )
( )22 yx

2

1

1f

1f
YXYX, ey

2

f
Γπ2

1
yfxfyx,f

+−
−

−









=⋅= (8)

Assuming a sample size of 10n = , in Fig. 1 the marginal probability densi-

ties ( )xf
X

 and ( )yf
Y

 (according to eqs. (7a) and (7b)) are plotted qualitatively

along the x- and y-axes while the joint probability density ( )yx,f YX,  (according

to eq. (8)) is shown as contour plot; all these probability densities are displayed

in dashed style. Orientating, the both expectation values of the respective mar-

ginal probability densities of X and Y as well as their point of intersection are

plotted.

Now, the probability density of the random variable U according to eq. (7)

is obtained by means of the theory of transforming a multivariate function with

two random variables [3,4]. The multivariate transformation rule is given by the

equation system (see eq. (7))

y  v, f 
y

δx
u =

+−
= (9a)

The inverse of this transformation rule is found to be

( ) ( )vu,h vy    ,  vu,hδ
f

vu
x

21
===+−= (9b)

The transformed joint probability density ( )vu,f VU,  is then defined by the equa-

tion

( ) ( ) ( )( ) Jdetvu,h,vu,hfvu,f 21YX,VU, ⋅= (10)
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Fig. 1 : Marginal probability densities ( )xf
X

 and ( )yf
Y

, expectation values and joint

probability density ( )x,yf X,Y  (dashed style). Joint probability density ( )u,vfU,V ,

marginal probability densities ( ) ( );f,δtfuf tU =  and ( ) ( )yfvf YV =  and expecta-

tion values (solid style)

where | det J | is the determinant of the Jacobi matrix. For the given case, the

determinant of the Jacobi matrix results in

( ) ( )

( ) ( ) f

v

10

f

u

f

v

det

v

vu,h

u

vu,h

v

vu,h

u

vu,h

detdet
22

11

=















−−

=



















∂

∂

∂

∂
∂

∂

∂

∂

=J (11)

Inserting eqs. (9b) and (11) in eq. (10) yields the transformed joint probability

density
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


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




+














+−−

−








=

2

2

v
f

vu

2

1

f

1f
VU, ev

2

f
Γfπ2

1
vu,f

δ

(12)

Assuming again a sample size of 10n =  and 1.645K
γ
=  corresponding to a

proportion 0.95γ =  (noncentrality parameter 5.202101.645nKδ
γ

=⋅== ),

the transformed joint probability density ( )vu,f VU,  is shown as contour plot

with solid lines in Fig. 1, as well.

The probability density of the random variable U according to eq. (7) is

now obtained as the marginal probability density ( )uf
U

 of ( )vu,f VU,

( ) ( )∫
∞

=

0

VU,U vdvu,fuf (13)

Performing this integration yields the probability density of what is referred to

as noncentral t-distribution. The probability density exists in analytic form and is

found to be [3]

( ) ( )

( )

j

2
0j

2

1f

2

2

f

2

δ

tU

tf

2δt

j!

2

1jf
Γ

tf
2

f
Γπ

fe
δf,;tfuf

2













+








 ++

+







== ∑

∞

=

+

−

(14)

with parameters 1nf −=  (degrees of freedom) and nKδ
γ

=  (noncentrality

parameter). Equation (7) in connection with eqs. (7a, b) are called the construc-

tive definition, since these equations define the noncentral t-distribution in an

unique manner.

Under the assumptions given above ( 5.202δ,01n == ), the marginal prob-

ability density ( ) ( ) ( )δf,δf,;tfuf
tU

t==  is plotted qualitatively in Fig. 1 along

the u-axis in fat solid style. The second marginal probability density ( )vf
V

 is

plotted qualitatively along the v-axis. Note, that ( ) ( )yfvf
YV

=  since the trans-

formation rule yv =  (see eq. (9a)) for this coordinate is just an identity and in-

volves no transformation. Orientating, the both expectation values of the respec-

tive marginal probability densities of U and V as well as their point of intersec-

tion are plotted in Fig. 1, again.
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Fig. 2 : Probability density ( ) ( )δ;f,tfuf tU = , expectation value (dashed vertical line) and

confidence level 0.75α1 =−  (hatched area)

So far it is proven that the expression nk  according to eq. (6) is distrib-

uted as a noncentral t-distribution with probability density

( )δf,~nk t (15)

with 1nf −=  degrees of freedom and nKδ
γ

=  as noncentrality parameter.

The quantity Kγ is obtained according to eq. (2c), whereas γ denotes the propor-

tion of the population specified to be at least below the upper limit value 
α1−

l

with confidence α1− . Again assuming 5.202δ and  01n == , the probability

density of nk  is plotted in Fig. 2.

Now, it is easy to evaluate the probability ( ) α1nkU −=≤Pr  as given

in eq. (6) numerically in dependence of the sample size n and of the proportion

γ. In mathematical terms, this is accomplished by solving the probability integral

( ) ∫
∞−

−==−

nk

t α1td)δf,;t(f:α1δ;f,t (16)
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for the upper integration limit nk . The calculation performed in eq. (16) is

equivalent to the determination of an upper one-sided confidence interval for the

quantity nk  with confidence α1− . Figure 2 shows graphically the meaning

of this confidence interval where the confidence level is displayed as hatched

area (assumed confidence level : 0.75α1 =− ). Orientating, again the expecta-

tion value of the probability density is plotted as a dashed vertical line.

From eq. (16) immediately follows that the factor k is obtained as [1]

( ) ( )
n

α1;nKf,

n

α1δ;f,
k

γ

α-n,1γ,

−

=

−

=

tt
(17)

It can be seen that in the case of unknown mean µ and unknown standard devia-

tion σ the factor k according to eq. (3b) becomes a function of the proportion γ,

the sample size n and the confidence level α1− . Inserting eq. (17) into eq. (3b)

yields the final equation for an upper one-sided tolerance interval

( )
n

s
α1δ;f,xskx α1n,γ,α1 ⋅−+=⋅+=

−−

tl (18)

A lower one-sided tolerance interval 
α

l , as it is of interest for strength proper-

ties, is obtained by inserting the quantile ( )α δ; f, −t  into eq. (18) instead of

( )α1δ;f, −t  which results in negative but numerically identical values.

It is interesting to note that, if the noncentrality parameter is set 0δ = , eq.

(18) becomes identical to the equation for the determination of an upper one-

sided confidence interval for the (unknown) population mean µ (50%-quantile).

In this case, the noncentral t-distribution simplifies to the more familiar central

(Student) t-distribution ( ) ( )f0f, tt =  with the upper one-sided quantile

( )α1f; −t . Therefore, tolerance intervals as discussed in this section must be

regarded as one-sided confidence intervals for the quantiles of a normal distri-

bution ( )s,xN .

This result is in contradiction with the terminology of EN 14358 where it is

stated that the “5%-quantile” is the result of the evaluation yet, more specifically

speaking, one-sided confidence intervals for the quantiles of a normal distribu-

tion with unknown mean µ and unknown standard deviation σ are obtained.
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4. EVALUATION OF THE STATISTICAL FACTORS

As stated in the introduction, the tables given in EN 14358 are rather in-

complete. Only a few statistical factors are given in dependence of sample size.

As the gaps between the different sample sizes are rather large, the interpolated

statistical factors become correspondingly inaccurate. It is hence desirable, to

have tables with numerically precise figures at hand. These tables are the subject

of this chapter.

In EN 14358, the proportion as understood in the previous chapters is set

0.95γ =  while two confidence levels are proposed for the application :

0.75α1 =−  and 0.841α1 =− . The latter confidence level corresponds to the

integral of the standardized normal probability density running from negative

infinity to one.

Having the proportion γ and the confidence levels α1−  defined it is a sim-

ple task to evaluate the statistical factors α1n,γ,k
−

 according to eqs. (16) and

(17). For the confidence level 0.75α1 =−  the factors α1n,γ,k
−

 are listed in Ta-

ble 1 and for the confidence level 0.841α1 =−  in Table 2.

5. CONCLUSIONS

In the presented paper, the determination of characteristic values for struc-

tural timber based on the European standard EN 14358 was considered. A com-

prehensive derivation of the statistical factors given in this standard was per-

formed by means of mathematical statistics in order to illustrate the assumptions

and the background of these figures. It was found that the terminology of EN

14358 is imprecise in so far as the “5%-quantile” is termed to be the result

whereas actually a lower one-sided confidence interval for the 5%-quantile is

obtained as result. For a more convenient application of EN 14358, complete

tables with statistical factors were provided based on the two confidence levels

proposed in the code.
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Table 1

Statistical factors αn,1γ,k
−

 for the calculation of one-sided tolerance intervals

(Population mean µ and standard deviation σ unknown)

Proportion : 0.95γ = , confidence level : 0.75α1 =−

n k0.95,n,0.75 n k0.95,n,0.75 n k0.95,n,0.75 n k0.95,n,0.75

1 - 26 1.889 51 1.809 76 1.776

2 5.122 27 1.883 52 1.807 77 1.775

3 3.152 28 1.878 53 1.805 78 1.774

4 2.681 29 1.873 54 1.804 79 1.773

5 2.463 30 1.869 55 1.802 80 1.772

6 2.336 31 1.864 56 1.801 81 1.771

7 2.250 32 1.860 57 1.799 82 1.771

8 2.188 33 1.856 58 1.797 83 1.770

9 2.141 34 1.853 59 1.796 84 1.769

10 2.104 35 1.849 60 1.795 85 1.768

11 2.073 36 1.846 61 1.793 86 1.767

12 2.048 37 1.842 62 1.792 87 1.767

13 2.026 38 1.839 63 1.791 88 1.766

14 2.007 39 1.836 64 1.789 89 1.765

15 1.991 40 1.834 65 1.788 90 1.764

16 1.976 41 1.831 66 1.787 91 1.764

17 1.963 42 1.828 67 1.786 92 1.763

18 1.952 43 1.826 68 1.784 93 1.762

19 1.941 44 1.824 69 1.783 94 1.762

20 1.932 45 1.821 70 1.782 95 1.761

21 1.923 46 1.819 71 1.781 96 1.760

22 1.915 47 1.817 72 1.780 97 1.760

23 1.908 48 1.815 73 1.779 98 1.759

24 1.901 49 1.813 74 1.778 99 1.758

25 1.895 50 1.811 75 1.777 100 1.758
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Table 2

Statistical factors αn,1γ,k
−

 for the calculation of one-sided tolerance intervals

(Population mean µ and standard deviation σ unknown)

Proportion : 0.95γ = , confidence level : 0.841α1 =−

n k0.95,n,0.841 n k0.95,n,0.841 n k0.95,n,0.841 n k0.95,n,0.841

1 - 26 2.009 51 1.889 76 1.840

2 8.199 27 2.001 52 1.886 77 1.838

3 4.118 28 1.993 53 1.884 78 1.837

4 3.281 29 1.986 54 1.881 79 1.836

5 2.915 30 1.979 55 1.879 80 1.834

6 2.706 31 1.972 56 1.876 81 1.833

7 2.569 32 1.966 57 1.874 82 1.832

8 2.471 33 1.960 58 1.872 83 1.830

9 2.397 34 1.954 59 1.870 84 1.829

10 2.338 35 1.949 60 1.867 85 1.828

11 2.291 36 1.944 61 1.865 86 1.827

12 2.251 37 1.939 62 1.863 87 1.826

13 2.218 38 1.935 63 1.861 88 1.825

14 2.189 39 1.930 64 1.860 89 1.823

15 2.164 40 1.926 65 1.858 90 1.822

16 2.142 41 1.922 66 1.856 91 1.821

17 2.122 42 1.918 67 1.854 92 1.820

18 2.105 43 1.914 68 1.852 93 1.819

19 2.089 44 1.911 69 1.851 94 1.818

20 2.074 45 1.907 70 1.849 95 1.817

21 2.061 46 1.904 71 1.847 96 1.816

22 2.049 47 1.901 72 1.846 97 1.815

23 2.038 48 1.898 73 1.844 98 1.814

24 2.028 49 1.895 74 1.843 99 1.813

25 2.018 50 1.892 75 1.841 100 1.812
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Of course, the outlined evaluation procedure is not limited to the determi-

nation of characteristic values for structural timber. Rather, the procedure is of

general validity. As statistics is an exact science, there can be one and only one

way to determine one-sided confidence intervals for the quantiles of a normally

distributed random variable. The more surprising it is that other European stan-

dards (e.g., EN 1058 for wood based panels [6]) propose evaluation procedures

which totally deviate from the one discussed here. The validity of these deviat-

ing procedures will be investigated in following papers.

ACKNOWLEDGEMENT

The author wants to express sincere thanks to Dr. Patrick Castera, Head of

Laboratoire du Bois de Bordeaux (LRBB), for his favour in performing the

translation of the French abstract.

REFERENCES

[1] JOHNSON, N.L., WELCH, B.L.: Applications of the noncentral

t-distribution, Biometrika, pp. 362 – 389, 1939

[2] JOHNSON, N.L., KOTZ, S.: Continuous univariate distributions – 2. John

Wiley & Sons, Hoboken, New Jersey, 1970

[3] RINNE, H.: Taschenbuch der Statistik. Verlag Harri Deutsch, Frank-

furt/Main, 1997

[4] SCHLITTGEN, R.: Statistische Inferenz. Oldenbourg Verlag, München,

1996

[5] N.N.: prEN 14358:2002-03. Structural timber – Calculation of charac-

teristic 5-percentile value. German version, 2002

[6] N.N.: EN 1058:1995-02. Wood based panels – Determination of charac-

teristic values of mechanical properties and density, 1995



WOLFGANG KLÖCK

58


