# COMPARISON BETWEEN THE DOUBLE-*K* FRACTURE MODEL AND THE TWO PARAMETER FRACTURE MODEL

# VERGLEICH ZWISCHEN DEM DOPPEL-K-BRUCHMODELL UND DEM ZWEIPARAMETERBRUCHMODELL

## COMPARAISON ENTRE LE MODELE DE FRACTURE DOUBLE-K ET LE MODELE DE RUPTURE DEUX PARAMETRES

Shilang Xu<sup>1,2</sup>, Hans W. Reinhardt<sup>2</sup>, Zhimin Wu<sup>1</sup> and Yanhua Zhao<sup>1</sup>

1 Department of Civil Engineering, Dalian University of Technology, Dalain, China

2 Institute of Construction Materials, University of Stuttgart, Stuttgart, Germany

## ABSTRACT

Concrete fracture experiments on both the three-point bending notched beams and the wedge splitting specimens with different relative initial crack length ( $a_0/D$ ) were carried out according to the experimental requirements for determining the fracture parameters introduced in the Double-*K* Fracture Model (DKFM) proposed by Xu and Reinhardt in recent years and the Two Parameter Fracture Model (TPFM) proposed by Jenq and Shah in 1985. The results of the comparison showed that the critical crack length  $a_c$  determined using the two different models are hardly different. The values of  $K_{Ic}^{un}$  and  $CTOD_c$  measured for the DKFM are in good agreement with  $K_{Ic}^{s}$  and  $CTOD_c$  measured for the TPFM.

However, the testing procedure of the TPFM needs a closed-loop testing machine whereas the DKFM needs only monotonic loading. In the TPFM a high order nonlinear equation has to be solved in order to get the relevant parameters whereas in the DKFM the parameters can be determined analytically on a pocket calculator. Furthermore, the DKFM supplies more information on the fracture process.

#### ZUSAMMENFASSUNG

Betonbruchversuche an gekerbten Dreipunktbiegebalken und Keilspaltenproben mit unterschiedlicher Anfangsrisslänge ( $a_0/D$ ) wurden durchgeführt, wobei die Versuchsbedingungen zur Bestimmung der Bruchparameter entsprechend dem Doppel-K-Bruchmodell (DKFM), kürzlich vorgeschlagen von Xu und Reinhardt, und dem Zweiparameterbruchmodell (TPFM), 1985 vorgeschlagen von Jeng und Shah, eingehalten wurden. Die Ergebnisse des Vergleichs zeigten, dass sich die kritische Risslänge  $a_c$  nach den zwei Modellen kaum unterscheidet. Die Werte von  $K_{Ic}^{un}$  und  $CTOD_c$ , gemessen für das TPFM, sind in guter Übereinstimmung mit  $K_{Ic}^{s}$  und  $CTOD_c$  nach dem DKFM.

Die Versuchsdurchführung des TPFM benötigt indessen eine verformungsgesteuerte Prüfmaschine, während beim DKFM monotone Belastung ausreicht. Im TPFM muss eine nichtlineare Gleichung höherer Ordnung gelöst werden, um die maßgeblichen Bruchparameter zu bekommen, während diese im DKFM analytisch mit einem Taschenrechner bestimmt werden können. Außerdem enthält das DKFM mehr Information über den Bruchprozess.

#### RESUME

Des essais de rupture de béton ont été réalisés par flexion trois points sur des éprouvettes entaillées et par partage en biseau. Ces essais ont été réalisés pour des longueurs de fentes initiales ( $a_0/D$ ) variables selon les exigences expérimentales pour la détermination des paramètres de rupture introduits dans le modèle de rupture double-K (DKFM) proposé récemment par Xu et Reinhardt et le modèle de rupture deux paramètres (TPFM) proposé par Jenq et Shah en 1985. Les résultats montrent que les longueurs de la fente critique  $a_c$  déterminées pour les deux modèles ne diffèrent guère. Les valeurs de  $K_{Ic}^{s}$  et  $CTOD_c$  mesurées pour le DKFM correspond bien avec les valeurs de  $K_{Ic}^{s}$  et  $CTOD_c$  mesurées pour le TPFM.

Cependant la procédure d'essai du TPFM requiert une machine à contrôle en boucle fermée, tandis qu'un chargement monotone suffit pour le DKFM. Pour le TPFM, une équation non-linéaire de haut ordre doit être résolue afin de déterminer les paramètres centraux, tandis que les paramètres du DKFM peuvent être déterminés analytiquement sur une calculatrice de poche. En outre, le DKFM livre plus d'informations sur le processus de rupture.

# **1** INTRODUCTION

Past attempts at describing the fracture behavior of concrete from the standpoint of conventional linear elastic fracture mechanic (LEFM) have not been very successful, because of the existence of the fracture process zone (FPZ) and the cohesive force ahead of a traction-free crack. In order to predict the crack propagation and to reflect the effluence of the FPZ on the fracture characteristic of materials, several fracture models, like the fictitious crack model (FCM) by Hillerborg et al. (1976), the crack band model (CBM) by Bazant and Oh (1983), the two parameter fracture model (TPFM) by Jenq and Shah (1985), the effective crack model (ECM) by Karihaloo and Nallathambi (1990) and Swartz and Refai (1987) as well as the size effect model (SEM) by Bazant, Kim and Pfeiffer (1986) have been presented. Based on different hypothesis and explanation for the phenomenon of non-linearity observed in tests, many of these models introduced the modified fracture parameters to predict the fracture behavior of concrete structures still by applying the conventional LEFM.

Typical among aforementioned models is TPFM. In the TPFM, two fracture parameters are proposed, namely the critical stress intensity factor  $K_{1c}^{s}$  defined as the stress intensity factor calculated at the critical effective crack tip and the critical crack tip opening displacement  $CTOD_{c}$  defined as the crack tip opening displacement calculated at the original notch tip of the specimen. For determining them, an unloading and reloading procedure is needed to be performed in tests so that an unloading compliance  $c_{u}$  can be used to evaluated the effective crack length  $a_{c}$ . Then the measured value of the peak load  $P_{max}$  and the evaluated value of the effective crack length  $a_{c}$  are inserted into a formula of LEFM to determine  $K_{1c}^{s}$  and  $CTOD_{c}$ .

In recent decades, more and more experimental investigations have showed that the fracture process in concrete structures includes three manifest stages: crack initiation, stable crack propagation and unstable fracture (or failure). So it is hoped that any fracture model could be depict these three stages in crack propagation. While all the above-mentioned fracture models can only be used to predict the unstable fracture of concrete structures without considering the crack initiation. For a normal structure, it may be sufficient only to predict its failure or unstable fracture under given loading or displacement conditions accurately. But for some special and important structures, for example, for a concrete pressure vessel or a high concrete dam, accurate prediction of both failure and crack initiation are imperative. In some cases, accurate prediction of the crack initiation is more important. In engineering practice, one may expect a fracture model is not only accurate for predicting the behavior of cracked structures, but also simple for evaluating the corresponding fracture parameters introduced in the model. Therefore an analytical fracture model that can contain these three stages and also easy to be conducted in tests is required for practical purpose.

In order to reflect the different stages in concrete fracture, a double-*K* fracture criterion is proposed by Shilang Xu and Reinhardt (1999a). In the double-*K* fracture criterion, the two fracture parameters ( $K_{lc}^{ini}$  and  $K_{lc}^{im}$ ) are introduced, both of them are given in terms of stress intensity factor.  $K_{lc}^{imi}$  is called the initiation toughness and its value is determined by inserting the initial cracking load  $P_{ini}$  and the initial crack length  $a_0$  into a formula of LEFM.  $K_{lc}^{im}$  is termed the unstable fracture toughness or the critical stress intensity factor and its value is determined by inserting the determined by inserting the measured critical effective crack length  $a_c$  into the same formula of LEFM. It is found that  $K_{lc}^{imi}$  are size-independent for the tested specimens. Also, for determining the double-*K* parameters, there is no need to unloading and reloading procedure, and a closed-loop system is not necessary.

In this report, a detailed comparison between the double-K model and the TPFM is made to clearly see the main difference between them and well understanding the effect of FPZ and cohesive force on the fracture characteristic of concrete material.

## 2 THE COMPARISON IN THEORY AND EXPERIMENT METHOD BETWEEN THE DOUBLE-*K* CRITERION AND TPFM

A load-*CMOD* (crack mouth opening displacement) plot of a typical prenotched beam tested in three-point bending is shown in Fig. 1. The nonlinear displacement can be attributed to the slow but stable crack growth preceding the attainment of the peak load. The effective crack length  $a_c$ , the sum of the initial crack length  $a_0$  plus the stable crack growth  $\Delta a_c$  is corresponding to the maximum load  $P_{\text{max}}$ . While in the reasonable evaluation of the effective crack length  $a_c$ , the TPFM and the double-*K* are based on the different hypothesis and theory concept. In the TPFM it is considered that the nonlinearity segment on the *P*-*CMOD* is mainly due to the elastic  $CMOD_n^e$  and only the elastic part  $CMOD^e$  or the compliance  $C_u$  measured on the unloading line  $AA^1$  is taking into account to calculate the effective crack length  $a_c$ . While it may be lead to an underestimate of the  $a_c$ , because the nonlinear behavior in the *P*-*CMOD* plot results from both the residual *CMOD*<sup>*p*</sup> that the plastic-frictional energy dissipated on it cannot be neglected (Bazant, 1996) and the *CMOD*<sup>*e*</sup><sub>*n*</sub>, the difference between the initial elastic compliance  $C_i$  and the unloading elastic compliance  $C_u$ . So in the double-*K*, based on the linear asymptotic superposition, the scant compliance  $c_s$  as illustrated in Fig. 1, or *CMOD*<sub>c</sub> (including the elastic part *CMOD*<sup>*e*</sup> and the unrecoverable deformation *CMOD*<sup>*p*</sup>), is used to calculate the effective crack length  $a_c$ , which consists of an equivalent-elastic stress-free crack and an equivalentelastic fictitious crack extension.



Fig. 1 A load-CMOD curve tested on the three-point bending beam

Another difference between these two models lies in the selection of fracture parameters. As above-mentioned, the TPFM choose the critical stress intensity factor  $K_{1c}^{s}$ , similar to unstable fracture toughness  $K_{1c}^{un}$  in double-K, it can predict the unstable fracture of concrete structures. But, this model cannot be used to depict the crack initiation which has been observed by many researchers with different investigating methods. Therefore, for some special cases the applications of this model are somewhat restricted. Yet, in the double-K, the initiation fracture toughness  $K_{1c}^{ini}$  is also introduced to represent the onset of stable crack propagation. Besides, these two fracture toughness are not isolated, the difference is the cohesion toughness  $K_{1c}^{c}$  due to cohesive forces distributed on the fictitious crack during crack propagation. Their relationship is as follows (Shilang Xu and Reinhardt, 1999b):

$$K_{\rm lc}^{\rm ini} = K_{\rm lc}^{\rm un} - K_{\rm lc}^{\rm c} \tag{1}$$

The dissimilarity in the explanation of cause of non linear feature in P-CMOD curve leads to the difference in test methods. In the TPFM, unloading compliance  $C_{\rm u}$  is needed to calculate the effective crack length  $a_{\rm c}$ , so at least one unloading and reloading procedure should be carried out, and for achieving the stable unloading after the maximum load, a closed-loop testing system is necessary. However some advantages in the TPFM are favourable. For example, only a single size of three-point bend beams is needed in the tests, all of fracture parameters, like  $K_{I_c}^s$ , CTOD<sub>c</sub>,  $a_c$  can be directly measured. So it is possible that the properties of size-independence of  $K_{Ic}^s$  and  $CTOD_c$  claimed by Jenq and Shah (1985) which are evaluated by the method described in (Jeng and Shah, 1985: RILEM, 1990) could be further justified by the results that are directly measured. In double-K, for the mensuration of the double-K fracture parameters,  $K_{lc}^{ini}$  and  $K_{lc}^{un}$ , tests on a single size of three-point bending notched beams are needed. The testing procedure is rather simple without unloading and reloading procedures. It only needs to apply monotonously a load on a beam until the maximum load is gained and to measure the rising branch of a P-CMOD curve. For achieving such an aim to measure the initial compliance  $c_i$  and the  $c_s$ in tests, a closed-loop testing system is not necessary.

#### **3** TEST RESULTS AND CALCULATIONS

Because the main difference is the evaluation of effective crack length  $a_c$  owning to the different explanation of non-linear segment in a *P-CMOD* plot, so the emphasis is focused on the calculation of  $a_c$ . Tests to determine the fracture parameters are performed on two groups specimens, standard three-point bending notched beams denoted with serials B and the wedging splitting specimens represented by serials WS. For these two groups, the cubical compressive strength  $f_{cu}$  is 47.96 MPa, and the maximum size of the coarse aggregate is 20 mm, and the static dead load for specimens is 24 KN/m<sup>3</sup>, and the self weight of loading facilities is 0.23 KN.

The configuration of three-point bending notched beam (BM) and wedging splitting specimens (WS) are illustrated in fig. 2. The dimensions for series BM are  $800 \times 200 \times 200$  (span×depth×thickness) with ratio of the initial crack length  $a_0$  against D as the variable, and series WS with dimensions  $200 \times 200 \times 200$  ( $D_1 \times H \times B$ ). During tests, load is measured through a sensor and a clip gauge is employed to record the crack mouth opening displacement *CMOD*, and these data are picked continuously through "GRAB" picking system. The test results in terms of *P*-*CMOD* for BM (or  $P_v$ -*CMOD* for WS) curve is shown in fig. 3 and fig. 4, and the measured results like the peak load  $P_{\text{max}}$  for BM (or  $P_{\text{vmax}}$ , for WS) the *CMOD<sub>c</sub>*, the initial compliance  $C_i$ , the scant compliance  $C_s$ , as well as unloading  $C_u$  are listed in Table 1 and Table 2. With these directly measured data, fracture parameters such as the critical stress intensity factor  $K_{1c}^s$  in the double-K, and the effective crack length  $a_c$  can all be determined.



Fig. 2 (a) the configuration of three-point bending beam (BM)



Fig. 2 (b) the configuration of wedge splitting specimen (WS)



*Fig. 3 (a)* a<sub>0</sub>/D=0.2



Fig. 3 (b) a<sub>0</sub>/D=0.3



Fig. 3 (c) a<sub>0</sub>/D=0.5



Fig. 3 (d)  $a_0/D=0.6$ 



Fig. 4 (a) a<sub>0</sub>/D=0.353



Fig. 4 (b)  $a_0/D=0.471$ 



Fig. 4 (c)  $a_0/D=0.588$ 





Table 1 The measured results of series BM specimens ( $S \times D \times B = 800 \times 200 \times 200 mm$ , $H_0 = 1mm$ ,  $f_{cu} = 47.96MPa$ )

| Nos. of |         |                 |                               | $C_{\rm i} {\rm x10^{-3}}$ | $C_{\rm s} {\rm x10^{-3}}$ | $C_{\rm u} {\rm x10^{-3}}$ |
|---------|---------|-----------------|-------------------------------|----------------------------|----------------------------|----------------------------|
| Specs.  | $a_0/D$ | $P_{\max}$ (KN) | <i>CMOD</i> <sub>c</sub> (mm) | (mm/KN)                    | (mm/KN)                    | (mm/KN)                    |
| BM102   | 0.2     | 11.1            | 0.045                         | 1.872                      | 4.054                      |                            |
| BM402   | 0.2     | 8.9585          | 0.03                          | 1.933                      | 3.349                      |                            |
| BM3402  | 0.2     | 11.193          | 0.0579                        | 2.074                      | 5.173                      | 3.255                      |
| BM3502  | 0.2     | 10.004          | 0.0498                        | 1.924                      | 4.978                      |                            |
| BM3602  | 0.2     | 10.66           | 0.0417                        | 2.408                      | 3.912                      | 4.177                      |
| BM303   | 0.3     | 8.282           | 0.0543                        | 3.686                      | 6.556                      |                            |
| BM2603  | 0.3     | 7.872           | 0.0546                        | 3.972                      | 6.936                      | 8.013                      |
| BM2703  | 0.3     | 9.922           | 0.0642                        | 3.553                      | 6.470                      | 6.392                      |
| BM2803  | 0.3     | 7.831           | 0.0552                        | 3.625                      | 7.049                      |                            |
| BM2903  | 0.3     | 7.79            | 0.0585                        | 3.723                      | 7.510                      | 8.706                      |
| BM3003  | 0.3     | 7.38            | 0.0543                        | 3.377                      | 7.358                      | 6.606                      |
| BM705   | 0.5     | 5.6375          | 0.084                         | 10.976                     | 14.900                     |                            |
| BM805   | 0.5     | 3.9565          | 0.0717                        | 12.274                     | 18.122                     |                            |
| BM1205  | 0.5     | 3.5055          | 0.0642                        | 8.595                      | 18.314                     |                            |
| BM1305  | 0.5     | 3.9975          | 0.0897                        | 9.469                      | 22.439                     | 19.935                     |
| BM1505  | 0.5     | 4.674           | 0.0645                        | 8.564                      | 13.800                     |                            |
| BM2005  | 0.5     | 4.8585          | 0.069                         | 9.690                      | 14.202                     | 13.940                     |
| BM1406  | 0.6     | 1.7015          | 0.0837                        | 17.960                     | 49.192                     |                            |
| BM1806  | 0.6     | 2.788           | 0.0888                        | 16.543                     | 31.851                     | 29.869                     |
| BM1906  | 0.6     | 1.517           | 0.0528                        | 14.939                     | 34.806                     |                            |

| Nos. of |         |                        |                               | $C_{\rm sv} x 10^{-3}$ | $C_{\rm iv} {\rm x10^{-3}}$ | $C_{\rm uv} {\rm x10^{-3}}$ |
|---------|---------|------------------------|-------------------------------|------------------------|-----------------------------|-----------------------------|
| Specs.  | $a_0/D$ | $P_{\text{vmax}}$ (KN) | <i>CMOD</i> <sub>c</sub> (mm) | (mm/KN)                | (mm/KN)                     | (mm/KN)                     |
| WS102   | 0.235   | 9.799                  | 0.0648                        | 6.613                  | 2.796                       | 6.436                       |
| WS2902  | 0.235   | 6.847                  | 0.0459                        | 6.704                  | 2.832                       | 5.618                       |
| WS1803  | 0.353   | 5.7195                 | 0.0624                        | 10.910                 | 4.878                       |                             |
| WS2103  | 0.353   | 6.806                  | 0.0675                        | 9.918                  | 4.823                       | 8.212                       |
| WS2203  | 0.353   | 5.74                   | 0.0663                        | 11.551                 | 4.760                       | 10.591                      |
| WS2303  | 0.353   | 5.125                  | 0.0552                        | 10.771                 | 4.814                       | 10.852                      |
| WS2403  | 0.353   | 5.904                  | 0.0588                        | 9.959                  | 4.257                       | 9.113                       |
| WS2703  | 0.353   | 6.0887                 | 0.0627                        | 10.298                 | 4.768                       | 9.589                       |
| WS2803  | 0.353   | 5.8835                 | 0.0675                        | 11.473                 | 4.756                       |                             |
| WS604   | 0.471   | 3.485                  | 0.0564                        | 16.184                 | 8.574                       |                             |
| WS704   | 0.471   | 4.4075                 | 0.0669                        | 15.179                 | 7.792                       | 15.751                      |
| WS904   | 0.471   | 3.567                  | 0.0744                        | 20.858                 | 9.083                       | 19.319                      |
| WS1004  | 0.471   | 3.6285                 | 0.0795                        | 21.910                 | 9.756                       | 19.185                      |
| WS1104  | 0.471   | 3.731                  | 0.0699                        | 18.735                 | 8.272                       | 17.271                      |
| WS1205  | 0.588   | 2.1935                 | 0.0576                        | 26.259                 | 15.236                      | 24.191                      |
| WS1305  | 0.588   | 2.337                  | 0.0741                        | 31.707                 | 15.277                      | 25.849                      |
| WS1405  | 0.588   | 2.6445                 | 0.0804                        | 30.403                 | 15.475                      | 24.470                      |
| WS1505  | 0.588   | 2.132                  | 0.0804                        | 37.711                 | 15.284                      | 33.001                      |
| WS1605  | 0.588   | 2.3985                 | 0.0798                        | 33.271                 | 14.891                      | 28.320                      |
| WS1705  | 0.588   | 2.6445                 | 0.0861                        | 32.558                 | 15.549                      | 23.914                      |
| WS2005  | 0.588   | 2.583                  | 0.0675                        | 26.132                 | 15.512                      | 22.671                      |
| WS2506  | 0.706   | 1.353                  | 0.1044                        | 77.162                 | 33.551                      | 53.078                      |
| WS2606  | 0.706   | 1.0865                 | 0.0957                        | 88.081                 | 33.989                      | 71.736                      |
| WS3006  | 0.706   | 1.3735                 | 0.093                         | 67.710                 | 32.999                      | 55.335                      |
| WS3106  | 0.706   | 1.2915                 | 0.0699                        | 54.123                 | 33.592                      | 42.759                      |

Table 2 The measured results of series WS specimens ( $D_1 \times H \times B = 200 \times 200 \times 200 mm$ , $H_0 = 1mm$ ,  $f_{cu} = 47.96MPa$ )

Then, the necessary equations for the calculation of fracture parameters for series BM and WS specimens will be detailed subsequently.

#### THE CALCULATIONS EQUATIONS FOR BM

First, the Young'modulus E can be calculated from the measured initial compliance  $c_i$  of *P*-*CMOD* curve as follows (RILEM, 1990):

$$E = 6Sa_0V_1(\alpha_0) / \left[C_1D^2B\right]$$
<sup>(2)</sup>

for *S*/*D*=4, the function  $V_1(\alpha_0)$  is given by

$$V_1(\alpha_0) = 0.76 - 2.28\alpha_0 + 3.87\alpha_0^2 - 2.04\alpha_0^3 + 0.66/(1 - \alpha_0)^2$$
(3)

where

 $a_0$  = initial crack length;

$$\alpha_0 = (a_0 + H_0)/(D + H_0);$$

 $H_0$  = thickness of clip gauge holder;

S = specimen loading span;

D = beam depth;

B = beam width;

 $C_i$  = the initial compliance from *P*-*CMOD* curve.

In this step, the TPFM and the double-*K* is the same, the main difference lies in the determination of the effective crack length, Based on the linear asymptotic superposition assumption, the double-*K* solves the effective crack length denoted by  $a_{ck}$  by LEFM as follows (Tada, 1985):

$$E = 6Sa_{\rm c}V_1(\alpha_{\rm c})/[C_{\rm s}D^2B]$$
(4)

where

 $a_{\rm c}$  = critical effective crack length to be determined;

$$\alpha_{\rm c} = (a_{\rm c}+H_0)/(D+H_0);$$
  
 $C_{\rm s} =$  the scant compliance from *P*-*CMOD* curve , equal to *CMOD*<sub>c</sub>/*P*<sub>max</sub> .

While, in the TPFM, the effective crack length denoted by  $a_{cp}$  is calculated from the unloading compliance  $C_u$  at 95% of peak load, so substitute  $C_u$  for  $C_s$ in equation (4), the  $a_{cp}$  described in the TPFM can be got. The comparison of  $a_{ck}$ and  $a_{cp}$  is listed in table 3.

| No     | $a_{\rm r}/D$ | $C_{\rm i} {\rm x10^{-3}}$ | $C_{\rm s} {\rm x10^{-3}}$ | $C_{\rm u} {\rm x10^{-3}}$ | E(Mpa) | a./D           | a /D           |
|--------|---------------|----------------------------|----------------------------|----------------------------|--------|----------------|----------------|
| 110.   | $u_0/D$       | (mm/KN)                    | (mm/KN)                    | (mm/KN)                    | E(Mpa) | $u_{\rm ck}/D$ | $u_{\rm cp}/D$ |
| BM3402 | 0.2           | 2.074                      | 5.173                      | 3.255                      | 34255  | 0.279          | 0.368          |
| BM3602 | 0.2           | 2.408                      | 3.912                      | 4.177                      | 29500  | 0.298          | 0.286          |
| BM2603 | 0.3           | 3.972                      | 6.936                      | 8.013                      | 31320  | 0.434          | 0.406          |
| BM2703 | 0.3           | 3.553                      | 6.470                      | 6.392                      | 35010  | 0.412          | 0.414          |
| BM2903 | 0.3           | 3.723                      | 7.510                      | 8.706                      | 33420  | 0.461          | 0.434          |
| BM3003 | 0.3           | 3.377                      | 7.358                      | 6.606                      | 36840  | 0.428          | 0.448          |
| BM1305 | 0.5           | 9.469                      | 22.439                     | 19.935                     | 38010  | 0.624          | 0.642          |
| BM2005 | 0.5           | 9.690                      | 14.202                     | 13.940                     | 37140  | 0.563          | 0.566          |
| BM1806 | 0.6           | 16.543                     | 31.851                     | 29.869                     | 39270  | 0.686          | 0.695          |

Table 3 the comparison of the TPFM and the double-K model in terms of effective cracklength for BM specimens

After the effective crack length is known, the fracture toughness  $K_{lc}^{ini}$  and  $K_{lc}^{un}$  can be decided. As previous stated, the unstable fracture toughness  $K_{lc}^{un}$  is corresponding to ( $P_{max}$ ,  $a_{ck}$ ), so it can be evaluated by inserting the maximum load  $P_{max}$  and the critical crack length  $a_{ck}$  into the following expression (Tada et al., 1985):

$$K_{1c}^{un} = 3(P_{\max} + 0.5W)SF_1(\alpha_{ck})/(2D^2B)$$
(5)

in which

$$F_{1}(\alpha_{ck}) = \frac{1.99 - \alpha_{ck}(1 - \alpha_{ck})(2.15 - 3.93\alpha_{ck} + 2.7\alpha_{ck}^{2})}{(1 + 2\alpha_{ck})(1 - \alpha_{ck})^{3/2}}$$
(6)

where

 $\alpha_{ck} = a_{ck}/D$ ;  $W = W_0 S/L$ , and  $W_0$  is the self weight of the beam.

As for the initial fracture toughness  $K_{lc}^{ini}$ , it will be calculated based on the equation (1), and the details of analytical solution for  $K_{lc}^{c}$  caused by the cohesive force is presented in (Shilang Xu and Reinhardt, 2000), herein it is briefed for the completeness of the report.



*Fig.* 5 *The calculation figure of the cohesive fracture toughness*  $K_{Ic}^{c}$ 

As shown in Fig. 5, the distributed cohesive force  $\sigma(x)$  is replaced by a concentrated load  $P_e$ , acting on the centroid of the cohesive force  $\sigma(x)$ , and the equation for  $K_{1c}^c$  can be written as (let  $\beta = \sigma_s(CTOD)/f_t$ ,  $V_0 = a_0/D$ ,  $V_c = a_{ck}/D$ ,  $U_e = x_e/a_{ck}$ ,  $x_e$  is the distance of the acting point of  $P_e$  from the bottom of the beam):

$$K_{\rm lc}^{c}/f_{\rm t}\sqrt{D} = \frac{2P_{\rm e}}{f_{\rm t}\sqrt{\pi \,a_{\rm ck}D}} Z(U_{\rm e},V_{\rm 0}/V_{\rm c})F(U_{\rm e},V_{\rm c}) = (1+\beta)\sqrt{V_{\rm c}/\pi}(1-V_{\rm 0}/V_{\rm c})$$
(7)

where

$$U_{\rm e} = x_{\rm e} / a_{\rm c} = \left(2 + \beta + (1 + 2\beta)V_0 / V_{\rm c}\right) / 3 / (1 + \beta)$$
(8)

$$F(U_{\rm e}, V_{\rm c}) = \frac{3.52(1-U_{\rm e})}{(1-V_{\rm c})^{3/2}} - \frac{4.35-5.28U_{\rm e}}{(1-V_{\rm c})^{1/2}} + \left\{\frac{1.30-0.30U_{\rm e}^{3/2}}{\left[1-U_{\rm e}^{2}\right]^{1/2}} + 0.83-1.76U_{\rm e}\right\} \cdot \left\{1-(1-U_{\rm e})V_{\rm c}\right\}$$
(9)

$$Z(U_{e}, V_{0}/V_{c}) = \frac{6(1.025 - 0.1\beta)}{1 + 1.83(V_{0} - 0.2)} \left(\frac{V_{0}}{V_{c}}\right)^{p} \sqrt{\frac{V_{c}}{\pi}} U_{e}^{-0.2} \qquad 0.2 \le V_{0} \le 0.8$$
(10)

in which,  $p = 1.5(V_0-0.2) + 0.8$ , when  $0.2 \le V_0 \le 0.6$ ;  $p = 3(V_0-0.6) + 1.4$ , when  $0.6 \le V_0 \le 0.7$ ; and  $p = 6(V_0-0.7) + 1.7$ , when  $0.7 \le V_0 \le 0.8$ .

During determining the  $\sigma_s(CTOD_c)$ , the bilinear softening tractionseparation law is adopted as sketched in fig. 6.



Fig. 6 Illustration of the bilinear softening traction-separation law

The area under the  $\sigma$ -w in fig. 2 is defined as the fracture energy  $G_F$  of concrete material (Hillerborg, 1976). The bilinear softening-traction separation law can be listed as:

$$\sigma = f_{t} - (f_{t} - \sigma_{s})w/w_{s} \qquad 0 \le w \le w_{s}$$
  

$$\sigma = \sigma_{s} (w_{0} - w)/(w_{0} - w_{s}) \qquad w_{s} \le w \le w_{0} \qquad (11)$$
  

$$\sigma = 0 \qquad w \ge w_{0}$$

For determining value of the break point  $(w_s, \sigma_s)$  and the crack width  $w_0$ , Xu proposed a formulized method based on concrete material's physical meaning (Shilang Xu, 1999)

$$w_{s} = 0.4 \sqrt{\alpha_{F}} G_{F} / f_{t}$$

$$\sigma_{s} = (2 - 0.4 \sqrt{\alpha_{F}}) f_{t} / \alpha_{F}$$

$$w_{0} = \alpha_{F} G_{F} / f_{t}$$

$$\alpha_{F} = \lambda - d_{\max}^{0.9} / 8$$

$$G_{F} = (0.0204 + 0.0053 d_{\max}^{0.95} / 8) (f_{c} / f_{c0})^{0.7}$$

$$\lambda = 10 - [f_{ck} / (2f_{ck0})]^{0.7}$$
(12)

where  $f_t$ ,  $f_c$  are the tensile and compressive strength in MPa ;  $f_{c0}$ =10MPa ;  $G_F$  is the fracture energy in N/mm ;  $d_{max}$  is the maximum size of aggregate in mm ;  $f_{ck}$  is the characteristic strength representing the concrete grade in MPa;  $f_{ck0}$ =10MPa . According to CEB-FIP Model Code 1990 , there is a relation of  $f_c=f_{ck}+8$  MPa . Now it can be seen if concrete grades and the maximum size of aggregate in the concrete are known , all parameters needed in the bilinear softening traction-separation curve can be certainly determined according to equations (12).

In the previous expression (11), one needs to know the  $CTOD_c$  corresponding to the peak load to give the correct the evaluation  $\sigma_s(CTOD_c)$  needed in equation (7). The following expression is used to determine  $CTOD_c$  (Jenq and Shah, 1985):

$$CTOD_{\rm c} = CMOD_{\rm c} \left\{ \left(1 - a_0/a_{\rm c}\right)^2 + \left(1.018 - 1.149a_{\rm c}/D\right) \left[a_0/a_{\rm c} - \left(a_0/a_{\rm c}\right)^2\right] \right\}^{1/2}$$
(13)

Up to now, the whole procedure for determine the double-*K* parameters has been completed. The test results from series BM is illustrated in Table 4, also their values are visualized in Fig. 7.

| r      |                   | 1                  |                   |        | r                      |                        |                        |
|--------|-------------------|--------------------|-------------------|--------|------------------------|------------------------|------------------------|
| Nos.of | $a_0/D$           | $a_{\rm sl}/D$     | CTOD <sub>c</sub> | E(Mna) | $K_{Ic}^{c}$           | $K_{1c}^{mi}$          | $K_{Ic}^{un}$          |
| specs. | u <sub>0</sub> ,D | u <sub>ck</sub> /D | (mm)              | E(mpu) | (Mpam <sup>1/2</sup> ) | (Mpam <sup>1/2</sup> ) | (Mpam <sup>1/2</sup> ) |
| BM102  | 0.2               | 0.34               | 0.026             | 37950  | 0.524                  | 1.182                  | 1.706                  |
| BM402  | 0.2               | 0.298              | 0.016             | 36760  | 0.492                  | 0.747                  | 1.239                  |
| BM3402 | 0.2               | 0.368              | 0.035             | 34255  | 0.86                   | 0.987                  | 1.847                  |
| BM3502 | 0.2               | 0.375              | 0.031             | 36920  | 0.807                  | 0.879                  | 1.686                  |
| BM3602 | 0.2               | 0.286              | 0.021             | 29500  | 0.418                  | 1.007                  | 1.424                  |
| Mean   |                   |                    | 0.026             | 35080  | 0.6202                 | 0.9604                 | 1.580                  |
| S.D.   |                   |                    | 0.008             | 3400   | 0.1994                 | 0.1614                 | 0.244                  |
| C.V.   |                   |                    | 0.304             | 0.097  | 0.3214                 | 0.1680                 | 0.155                  |
| BM303  | 0.3               | 0.41               | 0.024             | 33755  | 0.48                   | 1.064                  | 1.544                  |
| BM2603 | 0.3               | 0.406              | 0.024             | 31320  | 0.471                  | 0.984                  | 1.455                  |
| BM2703 | 0.3               | 0.414              | 0.029             | 35015  | 0.565                  | 1.301                  | 1.866                  |
| BM2803 | 0.3               | 0.427              | 0.025             | 34320  | 0.513                  | 1.02                   | 1.533                  |
| BM2903 | 0.3               | 0.434              | 0.027             | 33420  | 0.513                  | 1.043                  | 1.556                  |
| BM3003 | 0.3               | 0.448              | 0.026             | 36840  | 0.564                  | 0.975                  | 1.539                  |
| Mean   |                   |                    | 0.026             | 34110  | 0.51767                | 1.0645                 | 1.582                  |
| S.D.   |                   |                    | 0.002             | 1830   | 0.0401                 | 0.1207                 | 0.144                  |
| C.V.   |                   |                    | 0.076             | 0.054  | 0.0774                 | 0.1134                 | 0.091                  |
| BM705  | 0.5               | 0.553              | 0.018             | 32790  | 0.344                  | 1.313                  | 1.658                  |
| BM805  | 0.5               | 0.567              | 0.017             | 29322  | 0.405                  | 0.835                  | 1.24                   |
| BM1205 | 0.5               | 0.626              | 0.020             | 41870  | 0.614                  | 0.767                  | 1.381                  |
| BM1305 | 0.5               | 0.642              | 0.030             | 38010  | 0.736                  | 0.936                  | 1.672                  |
| BM1505 | 0.5               | 0.582              | 0.017             | 42020  | 0.464                  | 1.069                  | 1.532                  |
| BM2005 | 0.5               | 0.566              | 0.017             | 37140  | 0.405                  | 1.098                  | 1.503                  |
| Mean   |                   |                    | 0.020             | 36860  | 0.4947                 | 1.0030                 | 1.498                  |
| S.D.   |                   |                    | 0.005             | 5030   | 0.1498                 | 0.1989                 | 0.166                  |
| C.V.   |                   |                    | 0.247             | 0.1365 | 0.3028                 | 0.1983                 | 0.111                  |
| BM1406 | 0.6               | 0.738              | 0.022             | 36170  | 0.728                  | 0.486                  | 1.214                  |
| BM1806 | 0.6               | 0.695              | 0.020             | 39270  | 0.523                  | 0.994                  | 1.517                  |
| BM1906 | 0.6               | 0.719              | 0.013             | 43485  | 0.728                  | 0.257                  | 0.985                  |
| Mean   |                   |                    | 0.019             | 39640  | 0.6597                 | 0.5790                 | 1.239                  |
| S.D.   |                   |                    | 0.005             | 3670   | 0.1184                 | 0.3772                 | 0.267                  |
| C.V.   |                   |                    | 0.255             | 0.093  | 0.1794                 | 0.6515                 | 0.215                  |

Table 4 The results of double-K parameters from series BM



Fig. 7 The values of  $K_{lc}^{ini}$  and  $K_{lc}^{un}$  measured from series BM

#### THE CALCULATIONS EQUATIONS FOR WS

WS specimens are gaining more and more attentions because of its nonconsideration of the specimen weight during the determination of fracture parameters. They are widely used now to measure the fracture parameter of concrete materials (Xu et al., 1991; Brühwiler and Wittmann, 1990).

For WS specimens, the same procedure is conducted to get the comparison of the effective crack length  $a_{ck}$  in double- and  $a_{cp}$  in the TPFM, and the double-K fracture toughness  $K_{lc}^{ini}$  and  $K_{lc}^{un}$  can also be obtained. The following briefed the expression used in the calculation.

The formula to determine the fracture parameters of wedge splitting specimens are the same to the CT (compact tension) due to the geometry and the loading condition like each other. During the test, the veritcal load  $P_v$  and the *CMOD* are recorded, this is not like the CT in which the  $P_h$  and *CMOD* on the load line are directly recorded. But certain relation is existed when taking the wedge angle  $\alpha$  (as illustrated in Fig. 2(b)) into account:

$$P_{\rm h} = P_{\rm v} / (2tg\alpha) \tag{14}$$

in this report,  $\alpha$  is equal to  $15^{\circ}$ .

For the geometry of test specimens WS used in this report basically satisfy the standard CT-specimen recommended by ASTM standard E-399-72 (1972), the formula for determining the Young's modulus can be listed as (Murakami, 1987):

$$E = V_2(\alpha_0) / BC_{\rm ih} \tag{15}$$

where

$$V_{2}(\alpha_{0}) = \left(\frac{1+\alpha_{0}}{1-\alpha_{0}}\right)^{2} \left(2.163 + 12.219\alpha_{0} - 20.065\alpha_{0}^{2} - 0.9925\alpha_{0}^{3} + 20.609\alpha_{0}^{4} - 9.9314\alpha_{0}^{5}\right)$$
(16)

in which

$$\alpha_0 = (a_0 + H_0) / (D + H_0);$$

- $C_{\rm ih}$  = the initial compliance of  $P_{\rm h}$ -CMOD, equal to  $2 \text{tg} \alpha C_{\rm iv}$ ,  $C_{\rm iv}$  is the initial compliance of  $P_{\rm v}$ -CMOD
- B = the thickness of WS specimens;
- $H_0$  = thickness of clip gauge holder.

This step for calculating the Young's modulus is the same for both the TPFM and the double-K criterion.

While for the determination of the effective crack length, attentions may be paid to employment of the compliance of  $P_{\rm h}$ -CMOD curve or  $P_{\rm v}$ -CMOD curve

$$E = V_2(\alpha_{\rm ck}) / BC_{\rm sh} \tag{17}$$

where

 $\alpha_{\rm ck} = (a_{\rm ck} + H_0)/(D + H_0);$ 

 $C_{\rm sh}$  = the scant compliance from  $P_{\rm h}$ -CMOD curve, equal to  $CMOD_{\rm c}/P_{\rm maxh}$ , or equal to  $2 \text{tg} \alpha C_{\rm sv}$ ,  $C_{\rm sv}$  is the scant compliance from  $P_{\rm v}$ -CMOD curve.

For the TPFM, the effective crack length  $a_{cp}$  is using the same expression except the use of different compliance, replace the  $C_{sh}$  in equation (17) with  $C_{uh}$ , or  $C_{sv}$  with  $C_{uv}$  which is the unloading compliance of  $P_v$ -CMOD curve of 95% peak load. The calculation results are listed in Table 5.

| No   | a /D    | $C_{\rm iv} {\rm x10^{-3}}$ | $C_{\rm sv} {\rm x10^{-3}}$ | $C_{\rm uv} {\rm x10^{-3}}$ | F(Mpa)          | a /D       | a /D           |
|------|---------|-----------------------------|-----------------------------|-----------------------------|-----------------|------------|----------------|
| INU. | $u_0/D$ | (mm/KN)                     | (mm/KN)                     | (mm/KN)                     | <i>E</i> (wipa) | $u_{ck}/D$ | $u_{\rm cp}/D$ |
| 1    | WS102   | 2.796                       | 6.613                       | 6.436                       | 35315           | 0.411      | 0.410          |
| 2    | WS2902  | 2.832                       | 6.704                       | 5.618                       | 34860           | 0.409      | 0.378          |
| 3    | WS2103  | 4.823                       | 9.918                       | 8.212                       | 36150           | 0.498      | 0.466          |
| 4    | WS2203  | 4.760                       | 11.551                      | 10.591                      | 36625           | 0.530      | 0.520          |
| 5    | WS2303  | 4.814                       | 10.771                      | 10.852                      | 36220           | 0.513      | 0.523          |
| 6    | WS2403  | 4.257                       | 9.959                       | 9.113                       | 40955           | 0.523      | 0.513          |
| 7    | WS2703  | 4.768                       | 10.298                      | 9.589                       | 36560           | 0.507      | 0.500          |
| 8    | WS704   | 7.792                       | 15.179                      | 15.751                      | 38980           | 0.589      | 0.604          |
| 9    | WS804   | 5.183                       | 13.226                      | 12.223                      | 58600           | 0.633      | 0.630          |
| 10   | WS904   | 9.083                       | 20.858                      | 19.319                      | 33440           | 0.615      | 0.613          |
| 11   | WS1004  | 9.756                       | 21.910                      | 19.185                      | 31130           | 0.612      | 0.600          |
| 12   | WS1104  | 8.272                       | 18.735                      | 17.271                      | 36720           | 0.613      | 0.610          |
| 13   | WS1205  | 15.236                      | 26.259                      | 24.191                      | 36660           | 0.660      | 0.662          |
| 14   | WS1305  | 15.277                      | 31.707                      | 25.849                      | 36560           | 0.687      | 0.672          |
| 15   | WS1405  | 15.475                      | 30.403                      | 24.470                      | 36090           | 0.681      | 0.662          |
| 16   | WS1505  | 15.284                      | 37.711                      | 33.001                      | 36540           | 0.709      | 0.705          |
| 17   | WS1605  | 14.891                      | 33.271                      | 28.320                      | 37505           | 0.697      | 0.688          |
| 18   | WS1705  | 15.549                      | 32.558                      | 23.914                      | 35920           | 0.690      | 0.658          |
| 19   | WS2005  | 15.512                      | 26.132                      | 22.671                      | 36005           | 0.659      | 0.650          |
| 20   | WS2506  | 33.551                      | 77.162                      | 53.078                      | 36220           | 0.782      | 0.760          |
| 21   | WS2606  | 33.989                      | 88.081                      | 71.736                      | 35760           | 0.790      | 0.789          |
| 22   | WS3006  | 32.999                      | 67.710                      | 55.335                      | 36830           | 0.771      | 0.766          |
| 23   | WS3106  | 33.592                      | 54.123                      | 42.759                      | 36180           | 0.744      | 0.736          |

Table 5 The comparison of the TPFM and the double-K in terms of effective crack length forWS specimens

While for the double-*K* fracture toughness  $K_{1c}^{ini}$  and  $K_{1c}^{un}$  in WS specimens, the same procedure is samely carried out as series BM as presented above, and the calculated results are listed in Table 6 and Fig. 8.

| Nos.of | (D      | (D             | CTOD <sub>c</sub> |        | $K^{c}_{_{ m Ic}}$     | $K_{ m  Ic}^{ m \it ini}$ | $K^{un}_{lc}$          |
|--------|---------|----------------|-------------------|--------|------------------------|---------------------------|------------------------|
| specs. | $a_0/D$ | $a_{\rm ck}/D$ | (mm)              | E(MPa) | (MPam <sup>1/2</sup> ) | (MPam <sup>1/2</sup> )    | (MPam <sup>1/2</sup> ) |
| WS1803 | 0.353   | 0.514          | 0.028             | 35740  | 0.787                  | 0.55                      | 1.337                  |
| WS2103 | 0.353   | 0.498          | 0.029             | 36150  | 0.712                  | 0.794                     | 1.506                  |
| WS2203 | 0.353   | 0.53           | 0.031             | 36625  | 0.8                    | 0.612                     | 1.412                  |
| WS2303 | 0.353   | 0.513          | 0.025             | 36220  | 0.826                  | 0.374                     | 1.2                    |
| WS2403 | 0.353   | 0.523          | 0.027             | 40955  | 0.83                   | 0.588                     | 1.419                  |
| WS2703 | 0.353   | 0.507          | 0.028             | 36560  | 0.762                  | 0.629                     | 1.391                  |
| WS2803 | 0.353   | 0.529          | 0.031             | 36660  | 0.786                  | 0.655                     | 1.441                  |
| Mean   |         |                | 0.029             | 36990  | 0.7861                 | 0.6003                    | 1.387                  |
| S.D.   |         |                | 0.002             | 1780   | 0.0404                 | 0.1261                    | 0.097                  |
| C.V.   |         |                | 0.079             | 0.048  | 0.0514                 | 0.2100                    | 0.07                   |
| WS604  | 0.471   | 0.581          | 0.018             | 35430  | 0.739                  | 0.313                     | 1.053                  |
| WS704  | 0.471   | 0.589          | 0.022             | 38980  | 0.73                   | 0.623                     | 1.354                  |
| WS904  | 0.471   | 0.615          | 0.026             | 33440  | 0.793                  | 0.435                     | 1.228                  |
| WS1004 | 0.471   | 0.612          | 0.028             | 31130  | 0.751                  | 0.479                     | 1.23                   |
| WS1104 | 0.471   | 0.613          | 0.024             | 36720  | 0.812                  | 0.46                      | 1.271                  |
| Mean   |         |                | 0.024             | 35140  | 0.7650                 | 0.4620                    | 1.227                  |
| S.D.   |         |                | 0.004             | 3010   | 0.0357                 | 0.1108                    | 0.11                   |
| C.V.   |         |                | 0.163             | 0.086  | 0.0466                 | 0.2399                    | 0.09                   |
| WS1205 | 0.588   | 0.66           | 0.012             | 36660  | 0.622                  | 0.33                      | 0.953                  |
| WS1305 | 0.588   | 0.687          | 0.018             | 36560  | 0.738                  | 0.415                     | 1.153                  |
| WS1405 | 0.588   | 0.681          | 0.019             | 36090  | 0.688                  | 0.564                     | 1.252                  |
| WS1505 | 0.588   | 0.709          | 0.021             | 36540  | 0.84                   | 0.351                     | 1.191                  |
| WS1605 | 0.588   | 0.697          | 0.020             | 37510  | 0.777                  | 0.469                     | 1.245                  |
| WS1705 | 0.588   | 0.69           | 0.021             | 35920  | 0.716                  | 0.593                     | 1.309                  |
| ws1905 | 0.588   | 0.667          | 0.016             | 36375  | 0.631                  | 0.544                     | 1.175                  |
| ws2005 | 0.588   | 0.659          | 0.014             | 36005  | 0.598                  | 0.502                     | 1.099                  |
| Mean   |         |                | 0.017             | 36460  | 0.7013                 | 0.4710                    | 1.172                  |
| S.D.   |         |                | 0.003             | 506    | 0.0833                 | 0.0980                    | 0.11                   |
| C.V.   |         |                | 0.187             | 0.014  | 0.1188                 | 0.2081                    | 0.094                  |
| WS2506 | 0.706   | 0.782          | 0.017             | 36220  | 0.675                  | 0.593                     | 1.268                  |
| WS2606 | 0.706   | 0.79           | 0.016             | 35760  | 0.753                  | 0.368                     | 1.12                   |
| WS3006 | 0.706   | 0.771          | 0.014             | 36830  | 0.614                  | 0.573                     | 1.186                  |
| WS3106 | 0.706   | 0.744          | 0.008             | 36180  | 0.445                  | 0.497                     | 0.942                  |
| Mean   |         |                | 0.014             | 36250  | 0.6218                 | 0.5078                    | 1.129                  |

Table 6 The results of double-K parameters from series WS

| S.D. |  | 0.004 | 440   | 0.1308 | 0.1019 | 0.139 |
|------|--|-------|-------|--------|--------|-------|
| C.V. |  | 0.286 | 0.012 | 0.2104 | 0.2008 | 0.123 |

Continuation of Table 6



Fig. 8 The values of  $K_{1c}^{ini}$  and  $K_{1c}^{un}$  measured from series WS

#### 4 CONCLUSION

For decades, the nonlinearity behavior of *P-CMOD* curve observed in testing three-point beams has been one of the study focuses in the concrete fracture mechanics. Based on the different explanation and hypothesis about this phenomenon, many models depicting the concrete fracture characteristics have been presented. In this report, a detailed comparison is made between the Two Parameter Fracture Model (TPFM), typical in the existing literature, and the double-*K* fracture criterion proposed in recent years.

There is a growing recognition that the fracture process in the concrete structures consists of three apparent stages: the crack initiation, stable propagation and the unstable propagation. And it is widely accepted that the nonlinearity of *P-CMOD* curve is mainly associated with the FPZ. In the calculation of the effective crack length  $a_c$ , it should includes both the unrecoverable deformation  $CMOD^*$  and one part of the elastic deformation  $CMOD^e_n$ , the difference between unloading compliance  $C_u$  and the initial compliance  $C_i$ . While in the TPFM, in

order to employ the LEFM, only the latter part, the elastic  $CMOD_n^e$  is taking into account, which will obviously underrate the true value of  $a_c$ . And in the tests, it is not so easy to control the unloading procedure in the peak load. To equalizing this deficiency, RILEM proposed to adopt the unloading compliance  $C_u$  after 95% peak load as one means of compensation. From Table 3 and Table 5, it can be seen that the value of the effective crack length  $a_c$  differs very marginally from the double-*K* fracture criterion. So it can tell that this compensatory method is feasible.

Comparing with the TPFM, the double-*K* fracture criterion covers more completely in describing the concrete fracture process: in addition to the unstable fracture toughness  $K_{lc}^{un}$ , similar to the  $K_{lc}^{s}$  in the TPFM, representing the onset of the unstable crack propagation, the initial fracture toughness  $K_{lc}^{ini}$  is also introduced to describing the commencement of stable crack growth, and they are correlated by the cohesive forces acting on the FPZ.

Besides the more established in the theory concept, the double-K criterion is more practical in the applicability. In the TPFM, to obtain the unloading compliance  $C_u$ , a closed-loop testing system is required to achieve the stable unloading procedure. It is also shown in this report that the unloading procedure is uneasy to be accessed. Otherwise in the double-K model, for the determining the fracture parameters, such as  $a_c$ , only a monotonic loading is needed to carried out, without unloading procedure.

From the comparison between the TPFM and the double-K fracture criterion, it can be said that the double-K fracture criterion is more complete in the theory concept, more simple and convenient in the testing method. For most common materials and structural labs, this model is practical.

## ACKNOWLEDGEMENT

This paper is supported by the National Key Basic Research and Development Program (973 Program) No. 2002CB412709.

# REFERENCE

- [1] ASTM Standard E399-72 (1972). Standard Method of Test for Plane-Strain Fracture Toughness of Metallic Materials. Annual Book of ASTM Standard.
- [2] Bazant, Z. P. and Oh, B. H. (1983). Crack band theory for fracture of concrete. **RILEM. Materials and Structures 16(93)**, 155-177.
- Bazant, Z. P., Kim, J.K. and Pfeiffer, P.A. (1986). Determination of fracture properties from size effect tests. Journal of Structural Engineering. ASCE, 112 (2), 289-307.
- [4] Bazant, Z. P. (1996). Analysis of work-of-fracture method for measuring fracture energy of concrete. Journal of Engineering Mechanics ASCE 122, 138-144.
- [5] Brühwiler, E. and Wittmann, F. H. (1990). The wedge splitting test, a new method of performing stable fracture mechanics test. Engineering Fracture Mechanics 35 (1-3), 117-125.
- [6] CEB-Comite Euro-International du Beton-EB-FIP Model Code 1990 (1993), Bulletin D'Information No. 2132/214, Lausanne.
- [7] Hillerborg, A., Modeer, M and Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. **Cement and Concrete Research 6**, 773-782.
- [8] Jeng, Y. S. and Shah, S. P. (1985). Two parameter fracture model for concrete. Journal of Engineering Mechanics, ASCE, 111 (10), 1227-1241.
- [9] Karihaloo, B. L. and Nallathambi, P. (1990). Effective crack model for the determination of fracture toughness ( $K_{1c}^{s}$ ) of concrete. Engineering Fracture Mechanics 35 (4/5), 637-645.
- [10] Murakami (Editor-in-Chief) (1987). Stress Intensity Factors Handbook. Pergamon Press, London.
- [11] Refai, T. M. E. and Swartz, W. E. (1987). Fracture Behaviour of Concrete Beams in Three-Point Bending considering the influence of Size-Effects. Report No. 190, Engineering Experiments Station, Kansas State University.

- [12] RILEM Technical Committee 89-FMT (1990). Determination of fracture parameters ( $K_{Ic}^{s}$  and  $CTOD_{c}$ ) of plain concrete using three-point bend tests, proposed IRLEM draft recommendations. **RILEM. Materials and Structures 23 (138),** 457-460.
- [13] Tada, H., Paris, P. C. and Irwin, G. R. (1985). The Stress Analysis of Cracks Handbook. Paris Productions Incorporated, St. Louis, Missouri, USA.
- [14] Xu Shilang and Reinhardt, H. W. (1999a). Determination of double-K criterion for crack propagation in quasi-brittle fracture: Part I-Experimental investigation of crack propagation. International Journal of Fracture, 98 (2), 111-149.
- [15] Xu Shilang and Reinhardt, H. W. (1999b). Determination of double-*K* criterion for crack propagation in quasi-brittle fracture: Part II-Analytical evaluation and practical measuring methods for three-point bending notched beams. **International Journal of Fracture, 98 (2)**, 151-177.
- [16] Xu, Shilang and Hans W. Reinhardt (1999c). Determination of Double-K Criterion for Crack Propagation in Quasi-Brittle Materials, part III: Compact Tension Specimens and Wedge Splitting Specimens. International Journal of Fracture, 98 (2), 179-193.
- [17] Xu Shilang and Reinhardt, H. W. (2000). A simplified method for determining double-*K* fracture parameters for three-point bending tests. International Journal of Fracture, 104 (2), 181-208.
- [18] Xu Shilang (1999). Determination of parameters in the bilinear, Reinhardt's non-linear and exponentially non-linear softening curves and their physical meanings. Werkstoffe und Werkstoffprüfung im Bauwesen, Hamburg, Libri BOD, 410-424.
- [19] Zhao, G., Jiao H. and Xu, S. (1991). Study on fracture behaviour with wedge splitting test method. Fracture Processes in Concrete, Rock and Ceramics (Edited by van Mier et al.), E & F.N. Spon, London, 789-798.

SHILANG XU, H.-W. REINHARDT, ZHIMIN WU, YANHUA ZHAO