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SUMMARY

In the present paper, the finite element code based on the microplane model
for concrete (program MASA) is used for the analysis of two typical mixed-
mode geometries – the notched beam and the double-edge-notched specimen.
The local smeared fracture finite element analysis is carried out. As a
regularization procedure, the crack band method is used. Comparison between
experimental and numerical results shows that the used finite element code is
able to realistically predict structural response and crack pattern for mixed-mode
fracture of concrete. It is shown that for both investigated geometries mixed-
mode fracture mechanism dominates at crack initiation. However, with increase
of the crack length mode I fracture becomes dominant and finally specimens fail
in failure mode I.

ZUSAMMENFASSUNG

Der vorliegende Bericht beschreibt die numerische Untersuchung von zwei
typischen "mixed mode" Geometrien (gekerbter Balken und ein s.g. "Double-
Edge-Notched" Probekörper). Die Untersuchung wurde mit dem Finiten-
Elementen-Programm MASA, das auf dem "Microplane Model" für Beton
basiert, durchgeführt. In der Analyse wurde die verschmierte Rißmethode
angewendet. Als Lokalisierungsbegrenzer wurde die Rißbandmethode benutzt.
Der Vergleich zwischen den numerischen und experimentellen Ergebnissen
zeigt, daß die Analyse in der Lage ist, sowohl die Bruchlast als auch die
Rißbildung realistisch darzustellen. Die Rißbildung erfolgte zunächst in der
"mixed mode" Bruchart. Mit zunehmender Rißlänge wurde die "mode I"
Bruchart zunehmend dominant.
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RESUME

Dans article le code de l’élément fini basé sur le modèle microplane en
béton (logiciel MASA) est appliqué au deux géométrie typique dans la rupture
en mode mixte – la poutre préfissurée et la pièce préfissurée des deux faces.
L’analyse de la rupture repartie localité de l’élément fini a été exécuté, couplé au
modèle de la bande fissurée. La comparaison entre les résultats de l’essai et
l’analyse ont démontré que le logiciel est capable de prédire la réponse de la
structure en béton et la forme de la fissure en mode mixte. Il est démontré que
dans les deux géométrie étudiée le mécanisme de la rupture en mode mixte
domine en début de la rupture. Mais avec le propagation de fissure la rupture en
mode I de plus en plus domine et finalement les structures ont été endommagé a
la rupture en mode I.

INTRODUCTION

Concrete is a quasi-brittle material that exhibits cracking and damage
phenomena. It is today obvious that economical and safe concrete structures
cannot be designed without the use of fracture mechanics. Although in the last
two decades significant progresses in the field of the application of fracture
mechanics in design of concrete and reinforced concrete structures has been
made, there are still a number of open questions that need to be solved.

In fracture mechanics terminology there are three different cracking modes
defined: (i) mode I – opening mode, (ii) mode II – shearing mode and (iii)
mode III – tearing mode. At the macro scale level they describe three
independent kinematic movements of the upper and lower crack surface with
respect to each other and are sufficient to define all possible modes of crack
propagation in an elastic material. Of course, at the micro scale the stress
distribution is much more complex and at such a level modes of fracture have no
sense. As far as concrete is concerned, mode I is a relatively clear type of crack
propagation. On the contrary, mode II and III are complex failure modes, which
can hardly be realized in an experiment. In these modes the stress normal to the
crack surface need to be approximately zero and only in-plane shear stress
should exist. Even when these conditions can be realized, due to the complexity
of the concrete structure, over a concrete crack surface a combination of
different stresses exist (shear, tension, compression and bending). Although the
resulting stress may be in-plane stress (shear), complex stress-strain conditions
on a crack surface make the identification of mode II and III fracture parameters
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extremely difficult. Moreover, the question arises whether in a sense of linear
elastic fracture mechanics these two failure modes even exist. The similar
complex combination of stresses exists for mode I fracture type as well,
however, the stress and strain perpendicular to the crack surface dominate at this
fracture type.

In practice most cracks in concrete and reinforced concrete structures result
from mode I loading as well as in the combination between mode I and other
modes. One of rather frequent combinations is the combination between mode I
and mode II, so-called mixed mode fracture. Typical examples are diagonal
shear failure of reinforced concrete beams or punching of flat slabs. In the past
an, enormous amount of experimental and theoretical work has been done to
understand mode I of fracture. On the contrary, such a large number of studies
were not devoted to mixed-mode fracture of concrete. For this reasons,
nonlinear mixed-mode theories are not yet well developed for concrete like
materials [1].

In recent years a significant progress in modeling of concrete like materials
for general stress-strain histories has been achieved. Presently available models
for concrete can roughly be classified in two categories: (i) Macroscopic models,
in which the material behavior is considered to be an average response of a
rather complex microstructural stress transfer mechanism and (ii) microscopic
models, in which the micromechanics of deformations are described by stress-
strain relations on the microlevel. No doubt, from the physical point of view
microscopic models are more promising. However, they are computationally
extremely demanding. Therefore, in practical applications macroscopic models
are used.

Traditionally, macroscopic models are formulated by a total or incremental
formulation between the σij and εij components of the stress-strain tensor, using
the theory of tensorial invariants [2][3]. In the framework of the theory there are
various possible approaches for modeling of concrete, such as theory of
plasticity, plastic-fracturing theory, continuum damage mechanics, endocronic
theory and their combinations of various forms. Due to the complexity of
concrete these models can not realistically represent the behavior of concrete for
general three-dimensional stress-strain histories. Therefore, to formulate a more
general and relatively simple model significant effort in further development of
the microplane model for concrete has recently been done [4][5].
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Cracking and damage can principally be modeled in two different ways: (i)
discrete (discrete crack model) or (ii) smeared (smeared crack model). The
classical local smeared fracture analysis of materials which exhibit softening
(quasi-brittle materials) leads in the finite element analysis to the results, which
are mesh dependent [6]. As well known, the reason for this is the localization of
strains in a row of finite elements and a related energy consumption capacity
that depends on the element size. Consequently, the model response is mesh
dependent. To assure mesh independent results, total energy consumption
capacity has to be independent of the element size, i.e. one has to regularize the
problem by introducing a so-called localization limiter. Currently two different
approaches are in use. The first one is the relatively simple crack band method
[7] and the second ones are the so-called higher order methods: Cosserat
continuum [8] and nonlocal continuum approaches of integral type [9][10] or
gradient type [8]. Compared to the crack band method the higher order
procedures are more general but rather complex and related to different
problems (require extremely fine meshes, problems with boundaries, difficult to
identify the material parameter and other). Mesh independent results can
alternatively be obtained by the use of the discrete crack approach [11]. The
main drawback of this approach is the need for continuous re-meshing, which is
a rather complex and time consuming procedure. Moreover, some stress-strain
situations (for instance compression) are difficult to model in a discrete sense.
Therefore, the smeared crack approach is a more general approach, especially
for practical engineering applications.

To better understand mixed-mode fracture of concrete and to see whether it
is possible to model it by employing a constitutive law, which is calibrated using
only mode-I fracture test data, the numerical analysis of two typical mixed-mode
geometries is carried out. Moreover, it is investigated whether the local smeared
crack finite element code based on the crack band theory is able to realistically
predict relatively complex mixed-mode failure of concrete members. Studied are
a beam tested by [12] and a Double-Edge-Notched (DEN) geometry tested by
Nooru-Mohamed [1]. As a material constitutive law the microplane model for
concrete, recently proposed by Ožbolt et al. [5] is employed. As a localization
limiter the crack band theory [7] is used.
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FINITE ELEMENTMODEL

General

The finite element code (MASA) employed in the present study can be
applied for the nonlinear finite element (FE) analysis of concrete and reinforced
concrete structures [13]. It is based on the microplane material model and a
smeared crack concept. As regularization procedures the standard or improved
crack band approach (stress relaxation method) can be used. Alternatively, the
nonlocal integral approach can be employed as well. The concrete is discretized
by four-node quadrilateral elements (plane analysis) or by eight-node brick
elements (three-dimensional analysis). The reinforcement is represented by truss
or beam elements. Optionally, it can also be modeled in a smeared way, i.e.
smeared inside a row of concrete elements. Besides these standard elements,
special linear or nonlinear contact elements are available as well. The analysis is
incremental with a solution procedure based on the secant or constant stiffness
method.

Constitutive law for concrete – microplane material model

In the microplane model the material is characterized by a relation between
the stress and strain components on planes of various orientations. These planes
may be imagined to represent the damage planes or weak planes in the
microstructure, such as contact layers between aggregates in concrete (see
Figure 1). In the model the tensorial invariance restrictions need not to be
directly enforced. Superimposing the responses from all microplanes in a
suitable manner automatically satisfies them. G.I. Taylor advanced the basic
concept behind the microplane model in 1938 [14]. Later the model was
extended by Bažant and co-workers for modeling of quasi-brittle materials
which exhibit softening (Bažant and Prat, 1988; Ožbolt and Bažant, 1992; Carol
et al., 1992; Ožbolt et al., 2000).

The recently proposed version of the microplane model for concrete is
based on the so-called relaxed kinematic constraint concept [5]. In the model the
microplane (see Figure 1) is defined by its unit normal vector of components ni.
Normal and shear stress and strain components (σN, σTr, εN, εTr) are considered
on each plane. Microplane strains are assumed to be the projections of the
macroscopic strain tensor εij (kinematic constraint). Based on the virtual work
approach, the macroscopic stress tensor is obtained as an integral over all
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possible, in advance defined, microplane orientations (Ω denote the surface of
the unit sphere):

Ω++Ω= ∫∫
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To realistically model concrete, the normal microplane stress and strain
components have to be decomposed into volumetric and deviatoric parts
(σN=σV+σD, εN=εV+εD; see Figure 1), what leads to the following expression for
the macroscopic stress tensor:
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For each microplane component, the uniaxial stress-strain relations are
assumed as:

)(;)(;)( ,,, effTrTrTreffDDDeffVVV FFF εσεσεσ === (3)

where FV, FD and FTr are the uniaxial stress-strain relationships for
volumetric, deviatoric and shear components, respectively. From known
macroscopic strain tensor, the microplane strains are calculated based on the
kinematic constraint approach. However, in (3) only effective parts of these
strains are used to calculate microplane stresses. Finally, the macroscopic stress
tensor is obtained from (2). The integration over all microplane directions (21
directions) is performed numerically.

To model concrete cracking for any load history realistically, the effective
microplane strains are introduced. They are calculated as:

ψεε meffm =, (4)

where subscript m denotes the corresponding microplane components (V,
D, Tr) and Ψ is a so called discontinuity function. This function accounts for
discontinuity of the macroscopic strain field (cracking) on the individual
microplanes. It "relaxes" the kinematic constraint, which is in the case of strong
localization of strains physically unrealistic. Consequently, in the smeared
fracture type of the analysis the discontinuity function Ψ enables localization of
strains, not only for tensile fracture, but also for dominant compressive type of
failure.
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FIGURE 1. The concept of the microplane model:
a) discretization of the unit volume sphere for each finite element

integration point (21 microplane directions)
b) microplane strain components

Localization limiter - crack band method

The main assumption of the crack band method is that damage (crack) is
localized in a row of single finite elements. To assure a constant and mesh
independent energy consumption capacity of concrete (concrete fracture energy
GF) the constitutive law needs to be modified such that:

GF = Af h = const. (5)

where Af = the area under the uniaxial tensile stress-strain curve and
h = average element size (width of the crack band). Principally, the same
relation is valid for uniaxial compression with the assumption that the concrete
compressive fracture energy GC is a material constant:

GC = Afc h = const. (6)

in which Afc = area under the uniaxial compressive stress-strain curve. It is
assumed that GC is approximately 100 times larger than GF (GC ≈ 100 GF). From
(5) and (6) is obvious that the constitutive law for concrete needs to be adapted
to the element size.
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Willam's test - rotation of principal directions

To check whether the proposed model predicts consistent solution for
tensile dominant load with significant rotations of principal stresses, what is
relevant for modeling of mixed-mode fracture, Willam's test has been performed
[15]. In this test, uniaxial tension is applied first in the x direction (plane stress
state), reaching the onset of tensile cracking. Subsequently strain increments are
prescribed to all degrees of freedom proportionally to
∆ε = [∆εxx, ∆εyy, ∆γxy]

T = [0.50, 0.75, 1.00]T. This implies increments of tensile
strain for both principal axes, accompanied by a rotation that reaches
asymptotically the value of 380, measured from the x direction. In the present
example the used material parameters were: Young’s modulus E = 32000 MPa,
Poisson’s ratio ν = 0.2, tensile strength ft = 3.0 MPa, uniaxial compressive
strength fc = 38.0 MPa and fracture energy GF = 0.11 N/mm (assumed crack
band h = 60 mm). The evolution of σxx and σxy is shown in Figure 2. For
comparison, uniaxial stress-strain response is also plotted. Compared to the
uniaxial tensile response, the multidirectional damage reduces the post-peak
capacity in x direction and for large positive strains (tension) all stresses
correctly reduce to zero.
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FIGURE 2. Willam’s test – rotation of principal axis and comparison with
uniaxial tension [15].
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NUMERICAL STUDIES OF MIXED-MODE FRACTURE

Mixed-mode fracture of concrete is studied for two different concrete
geometries. First is analysed a single notched beam which was for concrete
tested by Arrea and Ingraffea [12]. Furthermore, so-called push-off type of the
specimen, used by Reinhardt et al. [16], is investigated. The originally proposed
geometry is modified because of experimental reasons and because shear in
originally proposed push-off specimen is not clear enough. Therefore, the
Double-Edge-Notched (DEN) specimen, tested by Nooru-Mohamed [1], is
studied. Both specimens are analysed by the use of the above presented
microplane model (M2-O, [5]). As a regularization procedure, the crack band
method is performed.

Single-edge-notched beam

The geometry and the loading arrangement of the single edge notched
beam is shown in Figure 3 [12]. For this geometry the tip of the crack
propagates in the mixed-mode stress field. By changing the load and the reaction
point the stress field could be varied from mode I to mode II. The chosen
loading system yields to the high KII/KI ratio at the crack tip of the notch
(K = stress intensity factor). As the crack propagates from the notch, the above
ratio decreases and mode I stress intensity factor becomes dominant. In past the
above geometry has been numerically investigated by various authors using
different approaches [1]. The objective results could be obtained by micro-
mechanical simulations or by using discrete crack approach. However, the
smeared crack models often led to residual stresses and to incorrect crack path.

Hydraulic actuator

Steel Beam ( 51 x 152 x 610 )

Concrete Beam

397203 397 2036161

30
0

FIGURE 3. Test set-up of the investigated beam geometry, dimensions in mm.
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The finite element discretization is shown in Figure 4. Quadrilateral plane
elements with four integration points are used. In the analysis the load was
applied by controlling the CMSD (Crack Mouth Sliding Displacement). The
used material parameters were the same as in the experiment, i.e. Young’s
modulus E = 30000 MPa, Poisson’s ratio ν = 0.18, tensile strength ft = 3.5 MPa
and concrete fracture energy GF = 0.14 N/mm.

FIGURE 4. The finite element discretization of the beam test specimen.
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FIGURE 5. Calculated and measured load-CMSD curves.

The calculated and in the experiment measured total load-CMSD curves
are plotted in Figure 5. The comparison between numerical and experimental
results is reasonably good. Figure 6 shows the calculated crack pattern (maximal
principal strains) and in the experiment observed typical crack pattern. As can
be seen, the agreement is very good, i.e. the same as in the experiment the final
crack tip falls right to the loading plate. The distribution of maximal principal
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stresses at failure is shown in Figure 7. As can be seen, along the crack path
there are no residual stresses.

FIGURE 6. Crack pattern: a) experiment and b) analysis
(dark zone = maximal principal strains).

FIGURE 7. Distribution of maximal principal stresses at failure – deformed mesh
(black zones = 3 MPa, white zones = 0 MPa).

Figure 7 shows the deformed mesh of the crack region at termination of the
analysis. The elements close to the notch tip are distorted in both, vertical and
horizontal directions. This indicates mixed-mode condition at initiation of the
crack (softening regime). The stress-strain distribution at notch tip is similar to
that observed when following the loading path according to Willam’s test [15],

No stress locking



J. OŽBOLT, H.-W. REINHARDT

134

i.e. during the entire load history the principal strain-axis rotate and the crack
opens in direction perpendicular to maximum principal stress. More the crack
propagates, less distorted are the elements at the crack tip. At final load stage
they are deformed nearly only into the horizontal direction (see Figure 7). This
means that mixed-mode fracture, observed at crack initiation, degenerates to
pure mode-I fracture at termination of the analysis (failure).

Double edge notched specimen

The Double-Edge-Notched specimen tested by Nooru-Mohamed [1] is
analysed using the presented finite element code. The specimen geometry and
the test set-up are shown in Figure 8. The specimen was first loaded by shear
load S. Subsequently, for constant shear load S, the vertical tensile load T was
applied up to failure. The load control procedure was applied by moving of the
upper loading platens in horizontal and vertical direction, respectively. The
rotation of the loading platens was restricted. During the application of the
horizontal load S, the vertical load was kept zero (T = 0). By subsequent tensile
loading the shear force was kept constant. The bottom (support) platens were
fixed and, the same as the upper (loading) platens, glued to the surface of the
specimen. Two case studies are carried out, i.e. for Smax = 5 kN and for Smax = 10
kN. The finite element discretization is performed by the use of the three-
dimensional eight node solid elements with eight integration points (see
Figure 9). The width of the finite element model was 5 mm (the actual width of
the specimen was 50 mm). The material properties are taken as: Young’s
modulus E = 32800 MPa, Poisson’s ratio ν = 0.2, tensile strength ft = 3.0 MPa,
uniaxial compressive strength fc = 38.4 MPa and concrete fracture energy
GF = 0.11 N/mm.

The calculated and in the experiment measured tensile load versus average
normal displacement δT (δT = (δMM'- δNN')/2) are for both load histories shown
in Figure 10a. The relation between average normal δT and average shear δS
(δS = δPP') displacements are plotted in Figure 10b. As can be seen, the
agreement between calculated and measured data is reasonably good. The same
as in the experiment, the tensile resistance decreases if shear load increases. The
calculated resistance overestimate the test data. The reason can be the chosen
shape of the tensile softening curves, which are close to the peak resistance
possibly to ductile. The another reason could due to the fact that only one row of
a three-dimensional elements (thickness of 5 mm) is used in the analysis and no
modeling of the complete specimen (thickness of 50 mm) is performed.
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Nevertheless, the numerical results are not optimized to the test data, i.e. for a
given macroscopic properties of concrete only one numerical analysis is
performed.
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FIGURE 8. Geometry of the DENS specimen.
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FIGURE 9. Finite element discretization.
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FIGURE 10. Calculated and measured load-displacement curves:
a) tensile load as a function of the average normal displacement and
b) average normal displacement versus average shear displacement.
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a) b)

FIGURE 11. Distorted meshes at termination of the analysis:
a) for Smax = 5 kN and
b) for Smax = 10 kN.

The distorted mesh at termination of the analysis is for both load histories
shown in Figure 11. The corresponding crack patterns (maximal principal
strains) are shown in Figure 12. For comparison, the crack patterns obtained in
the experiment are shown as well. It can be seen that the present finite element
code is able to correctly predict the crack propagation for mixed-mode fracture,
i.e. the calculated and observed crack patterns are for both load histories almost
identical.

Similar as for the beam specimen, the mixed-mode failure mechanism is
dominant at initiation of the crack (see distored finite elements at the notch tip in
Figure 11). It is more pronounced when the shear force is larger (compare
Fig 11a and 11b). Consequently, for larger shear force (mode II), tensile
resistance decreases. However, at termination of the analysis mode-I dominates.
This can be seen from Figure 11 which shows that at the crack tip the elements
are deformed only in direction of tensile load (vertical direction). At this stage,
the shear force, which is for the entire tensile load history constant, is transferred
from the loading plate to the vertical support plate over a compressive strut
which forms between two cracks (see Figure 13).
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a)

b)

FIGURE 12. Crack patterns observed in the experiment and in the analysis:
a) for Smax = 5 kN and b) for Smax = 10 kN.

FIGURE 13. Formation of the compressive strut at termination of the analysis
(dark zone = compressive zone).
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CONCLUSIONS

In the present paper, the finite element code based on the microplane model
for concrete and local smeared fracture concept is used for the analysis of two
typical mixed-mode geometries. As a regularization procedure, the crack band
method is used. Based on the numerical results and their comparison with test
data, the following conclusions can be drawn: (1) It is demonstrated that the
used local continuum finite element code is able to realistically predict structural
response and crack pattern for mixed-mode fracture of concrete; (2) Although
the local finite element code is used, no sensitivity with respect to the orientation
of the finite elements is observed. Moreover, the analysis shows no stress
locking; (3) For both investigated geometries, mixed-mode fracture mechanism
dominates at the crack initiation, however, with increase of the crack length
mode I becomes dominant. Finally, both specimens fail almost in pure mode I
fracture.
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