

Universität Stuttgart

RP 1-2: "Functionally Graded Concrete Building System – Design, Optimisation, Digital Production and Reuse"

MOTIVATION AND GOALS

Reduce, Reuse and Recycling

• Further reducing GHG emissions, resource consumption and waste volume through circular construction principles [1]

Extension of digital design methods

• Enhancing Co-Design by automatizing the design-to-production interface and establishing an integrative design tool

Digital manufacturing process

• Optimized robotic casting system for precise fabrication

REPORT AND STATE OF THE ART

Functionally graded concrete (FGC) elements

- Gradation layout and design of biaxially stressed plates [2], [3]
- Demountable, punctual connections using implants [4]

Fabrication process

- Modelling of the conveyor dynamics [5]
- Methods for synchronized trajectory generation [6]

Reduce, recycle and reuse as key principles of circular construction; Digital manufacturing by aid of an optimized robotic casting system

ROLE WITHIN THE CLUSTER

Co-Design Group / Research Network

- Co-Design of digitally fabricated concrete building systems
- RN I Multi-Story Buildings Design, Material and Fabrication of slabs permitting to reduce the environmental impact of concrete
- RN III Existing Building Stock Extension Future Adaptability

Demonstrators

- Full-scale reusable concrete slab in cooperation with RP 22-1
- Continuous scientific support to LCRL building demonstrator

WORK PROGRAM

- 1. Reusable functionally graded concrete (FGC) slab segments
- Structural concept and design methods for a reusable FGC slab system with high geometric adaptability, repeatability, reusability and material efficiency
- Conceptualization and validation of demountable, linear joints
- 2. Extension of digital Co-Design methods for FGC slabs
- Integration of holistic quality data, evaluation of code compliance and the fabrication process into the design process
- 3. Optimized Digital Casting and Planning for FGC components
- Improvement of the prototypical production system by increased focus on modelling of the flow dynamics and effort on including sensory information, as well as online synchronized trajectory generation
- 4. Digital Fabrication of Eco-Concrete
- Implementation and usage of real-time feedback in the digital fabrication processes for newly developed eco-concrete mixture

5. Validation of fabrication methods and structural behavior

Cooperation in the Cluster / Research Project Areas

- RP 8-2 / RP 16-2 Methods and algorithms
- RP 18-2 Ecological assessment, quality assurance [7]
- RP 22-1 Design process, digital casting and positioning of hollow bodies, joint demonstrator
- RPA B.1 Material System and Process Technology
- RPA B.2 Methods on conveyor modelling & trajectory generation
- RPA C Design methods for (reusable) FGC slab elements

from	Expected Co-Design Inputs and Outputs			
RP 8-2	Camera system for localization of formwork and on-site position calibration			
RP 16-2	Control access to the minicrane			
RP 18-2	Methods for quality assurance of technical quality			
	Accompanying LCA of developed process-steps			
	Evaluation of economic quality resulting from design and fabrication			
	Evaluation of social implications resulting from design and fabrication			
RP 22-1	Data structure and fabrication restrictions for the positioning of hollow bodies			
	Gripping system for the fabrication of a full-scale concrete slab			
	Requirements for the tower-crane gripper	RP 8-2		
	Casting system design for mounting on the minicrane	RP 16-2		
	Fabrication, material, and component data of graded concrete parts	RP 18-2		
	Automated generation of position of hollow bodies for the gripping system			
	Digital casting system for automated fabrication of graded concrete components	KF 22-1		

Cooperation within the cluster

• Application of the results from WP1-4 on a full-scale concrete slab

ILE 1,0 F	EK PhD	ISYS 0,5 PhD	IWB 1,0 PhD			
Design for reuse	Digital Co-Design		Digital fabrication			
WP 1.1 Structural concept of reusable FGC slab system	WP 2.1 Extension of digital design methods		WP 3.1 Optimization and Modelling of the Concrete Casting System	WP 4.1 Mix-Design for Eco- Concrete		
WP 1.2 Design methods for reusable FGC slab segments			WP 3.2 Synchronized Trajectory Generation for On-Site production	WP 4.2 Implementation of innovative Real Time Measurement System		
WP 1.3 Design and validation of demountable joints for reusable FGC slab system	WP 2.2 Fabrication interface and feedback loop			WP 4.3 Mixer-specific Benchmark		
WP 5 Validation of fabrication methods and structural behavior on a full-scale concrete slab						

PUBLICATIONS

[1] L. Blandini, "Lightweight and Sustainable Concrete Structures: The ILEK Research Strategy," in fib International Congress 2022 Oslo, 2022.

[2] D. Nigl, O. Gericke, L. Blandini et al., "Numerical Investigations on the Biaxial Load-Bearing Behaviour of Graded Concrete Slabs," in fib International Congress 2022 Oslo, 2022.

[3] O. Miller, O. Gericke, D. Nigl et al., "Simulation based investigations on the load-bearing behavior of graded concrete components exposed to fire," Fire, 2022. [Submitted for Review]

[4] O. Gericke, L. Blandini and W. Sobek, "Rigid Implant Connections for Thin-Walled Concrete Beams," in fib International Congress 2022 Oslo, 2022.

[5] B. Blagojevic, A. Nitsche and O. Sawodny, "Modeling of transient incompressible concrete mass flow through a hose," in 2021 IEEE Conference on Control Technology and Applications (CCTA), 2021, pp. 424–429, doi: 10.1109/CCTA48906.2021.9659068.

[6] B. Blagojevic, B. Schönemann, D. Nigl, L. Blandini and O. Sawodny, "Trajectory Planning for Concrete Element Fabrication with Optimal Control," in IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, 2021, pp. 1–6, doi: 10.1109/IECON48115.2021.9589695.

[7] Y. Yang, L. Balangé, O. Gericke, D. Schmeer, L. Zhang, W. Sobek and V. Schwieger, "Monitoring of the production process of graded concrete component using terrestrial laser scanning," Remote Sensing, vol. 13, no. 1622, 2021, doi: 10.18419/opus-11455.

www.intcdc.uni-stuttgart.de

