Comparing the Wöhler curves, it shows the excellent fatigue strength of a friction stir welding connection relating to base material EN AW 6016 T4.

Contact
Dipl.-Ing. F. Schreyer
Phone: +49 711 685-63033
Fax: +49 711 685-63053
E-mail: fabian.schreyer@mpa.uni-stuttgart.de
Internet: http://www.mpa.uni-stuttgart.de
The Joining Technology unit does research concerning issues in process technology and metallurgy of welding. The focus is currently on resistance spot welding and friction stir welding. Additionally, projection welding and ultrasonic welding as well as fusion welding processes can be tested in our laboratories.

Our portfolio includes experimental work such as parameter studies, process optimizations, heat treatment investigations including the determination of the developing microstructure and the resulting static and cyclic strength properties. In addition, we are working on current research projects to develop and improve numerical process simulations to predict process temperatures, resulting microstructures and their properties.

Due to the combination of numerical process simulation, experimental investigations and a deep understanding of the process, we are able to develop optimal and application-oriented solutions for various welding processes. Recently we have developed new joint configurations for friction stir welding with which aluminum and steel sheets of different thicknesses can be joined as butt joint.

Resistance Spot Welding

Current research analyses numerically and experimentally the influence of process parameters of resistance spot welding on the formation of softening zones in high-strength steels, which could endanger component integrity through the formation and expansion of cracks. For this purpose, an FE model is used to calculate the resulting hardness in the heat-affected zone, the microstructure and the nugget diameter after the welding process.

Friction Stir Welding

At the MPA, innovative weld configurations are being developed and experimentally tested for high-strength joining of aluminum and steel plates by means of friction stir welding. Additional experimental works are thermomechanically coupled, continuum mechanical simulations using specifically developed material models.

Ultrasonic Welding

Current research analyses numerically and experimentally the influence of process parameters on the resulting hardness in the heat-affected zone, the microstructure and the nugget diameter after the welding process.

Welding Process Simulation

Calculated temperature fields for friction stir welding (above) and resistance spot welding (below).